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1 Abstract

2 Introduction
Since the 70s there has been a rise of many
processor architectures that try to fulfil
specific performance and power application
constraints. One of more noticeable cases
are ARM’s RISC architecture being used in
mobile devices instead of the more popu-
lar and robust x86 CISC (Complex Instruc-
tion Set Computer) architecture in favour
of simplicity, cost and lower power con-
sumption [1, 2]. It has been shown that in
low power applications, such as IoTs (Inter-
net of Things), OISC implementation can
be superior in power and data through-
put comparing to traditional RISC archi-
tectures [3, 4]. This project proposes to
compare two novel RISC and OISC 8bit ar-
chitectures and compare their performance,
design complexity and efficiency.

2.1 Aims and Objectives
The project has three main objectives:

1. Design and build a RISC based proces-
sor. As this is aimed for low power and
performance applications it will be 8bit
word processor with four general pur-
pose registers, structure is similar to
MIPS.

2. Design and build an OISC based pro-
cessor. There are many different types
of OISC processor, MOVE variant has
been selected which is described in Ref-
erencessec:theory chapter. This type of
OISC architecture variant may be also
named TTA (Transport Triggered Ar-
chitecture).

3. Design a fair benchmark that both pro-
cessors could execute. This benchmark
include different algorithms that are
commonly used in controllers, IoT de-
vices or similar low power microproces-
sor applications.

2.2 Supporting Theory

This section goes though supporting theory
of RISC and OISC architectures.

Principal functions of general OISC ar-
chitecture should have advantage in perfor-
mance and power consumption while having
lower transistor count. This expectation is
supported mainly by the following papers:
• Using OISC SUBLEQ as a coprocessor for
the MIPS-ISA processor to emulate the
functionality of different classes shows desir-
able area/performance/power trade-offs [4].
• Comparing OISC SUBLEQ multicore to
RISC achieves better performance and
lower energy for streaming data processing
[3]. More specific OISC type - MOVE has
been researched since early 90s. It showed
that MOVE can benefits of VLIW (very large
instruction word) arrangement, classifying
it as SIMO (single instruction, multiple op-
eration) or SIMT (single instruction, multi-
ple transports) architectures. Problem with
all of these arrangement is that they ex-
hibit poor or complex hardware utilization.
OISC MOVE has been proposed as a design
framework enabling lower complexity, bet-
ter hardware utilization, and scalable per-
formance [5]. A MOVE32INT architecture
as been designed [6] and proven to be supe-
rior architecture to RISC. Using 1.6µm fab-
rication technology RISC achieved 20MHz
clock with 20Mops/second, MOVE32INT
implemented using SoGs (Sea of Gates)
achieved 80MHz with 320Mops/second [7].

TTA framework as further used in
other researches to implement Application-
Specific Instruction Set Processors (ASIPs)
to solve various problems. Some of the rele-
vant examples are RSA calculation [27]; ma-
trix inversion [28]; Fast Fourier Transform
(FFT) [25]; IWEP, RC4 and 3DES encryp-
tion [19]; Parallel Finite Impulse Response
(FIR) filter [17]; Low-Density Parity-Check
(LDPC) encoding [18]; Software Defined
Radio (SDR) [23]. One of the most re-
cent researches use TTA architecture to
solve Compressive Sensing algorithms. It
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showed 9 times of energy efficiency that
of FPGA implemented NIOS II processor,
and theoretical 20 time energy efficiency
that of ARM Cortex-A15 [26]. Most of
these researches show that TTA has greater
power efficiency, higher clock frequency,
lower logic resource count.

These benefits come with an expense,
VLIW has bigger instruction word therefore
bigger program size. TTA especially suf-
fers from this due to redundant instructions.
Some proposed solutions are variable length
instructions with templates, which reduced
program size between 30% and 44%; [16,
31]; compression based on arithmetic cod-
ing [14]; and method to remove redundant
instructions [13].

With proposed MOVE framework hardware
utilisation shown to be improved by reduc-
ing transition activity [21], reducing inter-
connects shown saving 13% of energy [22]
on small scale. A novel architecture named
SynZEN also showed a further improve-
ments by using adaptable processing unit
and simple control logic [30].

There is a lack of research investigating
and comparing more general purpose
OISC MOVE 8bit processor for lower power
applications. The main theory for OISC
architecture used in this project will be
based on [9, 10, 11, 12].

Section 3 4 . Section 5 explains both pro-
cessor design choices and how each proces-
sor part is implemented on OISC and RISC
processor. It also includes assembly de-
sign. In section 6, results will be discussed,
including benchmark methods. Summary
and conclusion of design and results can be
found in section 7. Appendix in section 9
includes any other information such as both
processor instruction set.

3 Goals and Objectives
This project has three main motivations:

1. Compare how well OISC MOVE architec-
ture would perform in low performance
microcontroller application comparing
to equivalent RISC architecture.

2. Study and explore computer architec-
tures, SystemVerilog and assembly lan-
guages.

3. View an alternative method of us-
ing OISC MOVE as SISO (single in-
struction, single operation) architec-
ture, comparing to more commonly im-
plemented TTAs architectures that are
either VLIW (very large instruction
word) SIMO type (single instruction,
multiple operation) or SIMT (single in-
struction, multiple transports).

4 Theory and Analytical
Bases

RISC that this paper will be exploring
is classical SISO (single instruction, sin-
gle operation) processor. TTAs are usu-
ally of type SIMT (single instruction, multi-
ple transports) [7]; A middle between these
two classes is SIMO type (single instruction,
multiple operation)

Decided design criteria:

• Minimal instruction size

• Minimalistic design

5 Technical Method
This section describes methods and design
choices used to construct two processors.

5.1 Machine Code
5.1.1 RISC

As the aim of instruction size to be as min-
imal as possible, RISC instruction decided
to be 8bits with optional additional imme-
diate value from 1 to 3 bytes. Immediate
values are explained in section 5.4.
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Decision was made to have instruction
compose of operation code two operands
- source/destination and source, which is
similar to x86 architecture rather than
MIPS. Three possible combinations of reg-
ister address sizes are possible in such case
from one to three bits. Two was selected as
it allow having four general purpose regis-
ters which is sufficient for most applications,
and allow four bits for operation code - al-
lowing up to 16 instructions.

Due to small amount of available opera-
tion codes and not all instructions requiring
two operands (for example JUMP instruction
may not need any operands or could use
one operand to have address offset), other
two type instructions are added to the de-
sign - with one and zero operands. See fig-
ure 5.1.1. This enabled processor to have
45 different instructions while maintaining
minimal instruction size. Final design has:

• 8 2-operand instructions

• 32 1-operand instructions

• 5 0-operand instructions

Full list of RISC instructions are listed in
table 9.1.1 in Appendix section.

2 operands: 0 1 2 3︸ ︷︷ ︸
op. code

4 5︸ ︷︷ ︸
dst.

6 7︸ ︷︷ ︸
src.

1 operand: 0 1 2 3︸ ︷︷ ︸
op. code

4 5︸ ︷︷ ︸
dst.

6 7︸ ︷︷ ︸
op. c.

0 operands: 0 1 2 3 4 5 6 7︸ ︷︷ ︸
operation code

Figure 5.1.1: RISC instructions compo-
sition. Number inside box represents bit in-
dex. Destination (dst.) bits represents of
source and destination register address.

5.1.2 OISC

As OISC requires only a single instruction,
composition of instruction mainly requires

two parts - source and destination. To al-
low higher instruction flexibility a immedi-
ate bit has been added to replace source
address by immediate value. Composition
of finalised machine code is shown in figure
5.1.2.

0︸︷︷︸
imm.

1 2 3 4︸ ︷︷ ︸
destination

5 6 7 8 9 10 11 12︸ ︷︷ ︸
source

Figure 5.1.2: OISC instruction composi-
tion. Number inside box represents bit in-
dex.

Decision was made to have source ad-
dress to be eight bits to allow it be re-
placed with immediate value. Destination
address was chosen to be as minimal as pos-
sible, leaving only four bits or 16 possible
destinations. Final design has 15 destina-
tion and 41 source addresses. This is not
the most space efficient design as 41 source
addresses would require only six bits for
address, wasting two bits every time non-
immediate source is used.

Full list of OISC sources and destinations
are listed in table 9.1.2 in Appendix section.

5.2 Arithmetic Logic Unit

This section will discuss ALU implementa-
tions of both processors. For fair compari-
son between OISC and RISC, ALU in both
system will have the same capabilities de-
scribed in table 5.2.1.
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Name Description
ADD Arithmetic addition (inc. carry)
SUB Arithmetic subtraction (inc.

carry)
AND Bitwise AND
OR Bitwise OR

XOR Bitwise XOR
SLL Shift left logical
SRL Shift right logical
ROL Shifted carry from previous SLL
ROR Shifted carry from previous SRL
MUL Arithmetic multiplication
DIV Arithmetic division

MOD Arithmetic modulus

Table 5.2.1: Supported ALU commands
for both processors

5.2.1 OISC

Due to the structure of OISC processor,
ALU source A and B are two latches that
are written into when ALU0 or ALU1 des-
tination address is present. ALU sources
are connected with every ALU operator and
performed in single clock cycle. This value
is stored in register so that it would imme-
diately available in a next clock cycle as a

source data. Figure 5.2.1 represents logic
diagram of ALU with only addition and
multiplication operators present. Note that
output of EQ3 is connected to enable of
REG3, enabling output of carry to be only
read after ADD source is requested. This pre-
vious source memory is also used for SUB,
ROL and ROR operations. This allows pro-
cessor to perform other operations such as
store or load values, before accessing carry
bit, or carried byte for ROL and ROR opera-
tions.

5.2.2 RISC

RISC processor has very similar structure to
OISC with two exceptions. Inputs to ALU
comes from logic router that decided how
to route data in datapath. Output buffers
are replaced by one multiplexer that selects
single output from all ALU operations. An-
other point is that RISC ALU output is
16bit, higher byte saved in "ALU high byte
register" for MUL, MOD, ROL and ROR opera-
tions. This register is accessible with GETAH
instruction.

Figure 5.2.1: Digital diagram of OISC partial ALU logic
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Figure 5.3.1: Digital diagram of RISC sliced ROM memory logic

5.3 Memory

This section describes how instruction
memory (ROM) is implemented for both
processors.

5.3.1 RISC

In order to allow dynamic instruction size
from one to four bytes a special memory
arrangement is made. A system was re-
quired to access word (8bits) from memory
and next three words. To achieve this four
ROM blocks been utilised, each containing
one fourth of sliced original data. Input ad-
dress is offset by adders ADDER1-3 and
further divided by four by removing two
least significant bits at addr0-3. Before
concatenating output of each ROM block
into final four bytes, ROM outputs q0-3 are
rearranged depending on ar signal. Note
that MUX1-4 each input is different, this
may be better visualised with Verilog code
in listing 1.

Listing 1: RISC sliced ROM memory mul-
tiplexer arrangement Verilog code
case(ar)
2’b00: data ={q3 ,q2 ,q1 ,q0};
2’b01: data ={q0 ,q3 ,q2 ,q1};
2’b10: data ={q1 ,q0 ,q3 ,q2};
2’b11: data ={q2 ,q1 ,q0 ,q3};
endcase

5.3.2 OISC

OISC instructions are fixed 13 bits, which
causes different problems to RISC sliced
memory - non-standard memory word size.
To implement ROM in FPGA, Altera Cy-
clone IV M9K memory configurable blocks
were used. Each blocks as 9kB of mem-
ory each allowing 1024x9bit configuration.
Combining three of such blocks together
yields 27bits if readable data in single clock
cycle. To store instruction code to such con-
figuration, pairs of instruction machine code
sliced into three parts plus one bit for par-
ity check, see figure 5.3.2. Circuit extract-
ing each instruction is fairly simple, shown
in figure 5.3.3.

5.4 Instruction decoding
This section describes RISC and OISC dif-
ferences between instruction decoding and
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immediate value handling.

5.4.1 RISC

Already described in previous section 5.3,
instruction from memory comes as 4 bytes.
Least significant byte is sent to control
block, other three bytes are sent to imme-
diate override block (IMO) shown in fig-
ure 5.4.1. These three bytes are labelled
as immr.

IMO block is a solution to change imme-
diate value which enabled dynamically cal-
culated memory pointers, branches depen-
dant on register value or any other func-
tion that needs instruction immediate value
been replaced by calculated register value.
IMO is controlled by control block and
cdi.imoctl signal, which is changed by CI0,
CI1 and CI2 instructions. When signal
is 0h, this block is transparent connecting
immr directly to imm. When any of CI in-
structions executed, one of IMO register is
overridden by reg1 value from register file.
In order to override two or three bytes of

immediate, CI instructions need to be exe-
cuted in order. Only for one next instruc-
tion after last CI will have immediate bytes
changed depending on what are values in
IMO registers.
This circuit has two disadvantages:

1. Overriding immediate bytes takes one
or more clock cycles,

2. At override, immr bytes are ignored
therefore they are wasting instruction
memory space.

Second point can be resolved by designing
a circuit that would subtract the amount of
overridden IMO bytes from pc_off signal
(program counter offset that is dependant
on i-size value) at the program counter, thus
effectively saving instruction memory space.
This solution however would introduce a
complication with the assembler as addi-
tional checks would need to be done during
compiling to check if IMO instruction are
used.

ROM0 ROM1 ROM2︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26︸ ︷︷ ︸︸ ︷︷ ︸︸︷︷︸

InstrA InstrB parity

Figure 5.3.2: OISC three memory words composition. Number inside box represents
bit index.

Figure 5.3.3: Digital diagram of OISC instruction ROM logic
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Figure 5.4.1: Digital diagram of RISC immediate override system

Figure 5.4.2: Digital diagram of OISC instruction decoder
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5.4.2 OISC

OISC immediate value is set in instruction
decoder shown in figure 5.4.2. Decoder op-
eration is simple - instruction machine code
is split into three parts as described in 5.1.2.
If instruction source address is 00h, con-
nect data bus with constant 0 via MUX2.
If immediate bit is 1, set source address to
00h (to make sure no other buffer source
connects to data bus), and connect instruc-
tion source address (immediate value) to
databus via MUX2 and BUF1.

6 Results and Analysis

6.1 FPGA logic component
composition

This subsection looks at test and its results
to find how much FPGA logic components
each processor takes and what is composi-
tion of each part.

Test was performed with Quartus syn-
thesis tool and viewing flow summary re-
port. This report includes synthesised de-
sign metrics including total logic elements,
registers, memory bits and other FPGA re-
sources. Test will only look at logic ele-
ments and registers. Total number of logic
elements was found out by synthesising
full processors, then commenting relevant
parts of code, re-synthesising and view-
ing changes in total logic elements. Such
method may not be the most accurate, be-
cause during HDL synthesis circuit is opti-
mised an unused connections removed. This
means that more logic may be not synthe-
sised than intended.

There are four parts of each processor
that will be tested:

1. Common - processor auxiliary logic
that is used by both processors. It
includes communication block with
UART, RAM and PLL (Phase-Locked
Loop, for master clock generation).

2. ALU - as described in section 5.2, both
processors have slightly different imple-
mentation of ALU.

3. Memory - processors memory man-
agement, including stack.

4. Other - reminding logic of processor
that was not analysed.

Processors FPGA logic element composition

OISC RISC
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Figure 6.1.1: Bar graph of FPGA logic
components taken by each processor.

Results of a test are shown in figures 6.1.1
and 6.1.2. Common logic uses 293 logic el-
ements and 170 registers. OISC uses 1705
logic elements, while RISC uses 3218. Ex-
cluding common logic, OISC takes 48.3% of
RISC’s logic elements.

Processors FPGA register usage composition

OISC RISC
0
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300
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800
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Figure 6.1.2: Bar graph of FPGA register
resources taken by each processor.

OISC uses 726 logic elements, while RISC
uses 407. Excluding common logic, OISC
uses 78.4% more registers than RISC.
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Looking at composition, OISC ALU
takes 30.2% more logic gates. Looking at
figure 6.1.2, high number of OISC ALU reg-
isters can be observed which concludes, that
higher resource usage is OISC ALU code in-
clude buffer logic.

Memory logic elements composition of
OISC is only 34.4% of RISC’s and 7% lower
for register resources, comparing to RISC.
This indicate that by removing memory
logic for RISC, synthesis tool may removed
also other parts of processor, possibly part
of control block because it mostly contains
combinational logic.

Other logic includes instruction decoding
with ROM, register file, program counter.
RISC exclusively has control block. Note
that OISC uses only three ROM memory
blocks whereas RISC uses four as explained
in section 5.3, however this should make a
minimal difference as M9K memory blocks
are not included in FPGA logic element or
register count. Comparing both processors,
OISC has only 37% of other logic compo-
nents to RISC, however it has 2.28 times
more registers. This shows a logic compo-
nent - register trade-off. OISC buffer and
common registers logic that connects bus
require many more registers whereas RISC
uses combination logic in control block in
order to control same data in datapath.

Much higher logic components in RISC
can be also explained more complicated
register file, ROM memory logic and pro-
gram counter. All of these components has
some additional logic for timing correction
or additional functionality required by these
blocks integration into datapath.

6.2 Benchmark Programs

6.2.1 Number of instructions

6.2.2 Instruction composition

Function composition was executed with
following code:

Listing 2: RISC assembly frame for ex-
ecutring tests
setup:

JUMP .start
.done:

JUMP .done
.start:

; Setup values
; Call function
JUMP .done

Listing 3: OISC assembly frame for ex-
ecutring tests
setup:

BR1 .start @1
BR0 .start @0
BRZ 0x00

.done:
BRZ 0x00

.start:
; Setup values
; Call function
BR1 .done @1
BR0 .done @0
BRZ 0x00

6.3 Maximum clock frequency

6.4

7 Conclusion
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9 Appendix

9.1 Processor instruction set tables

Table 9.1.1: Instruction set for RISC processor. * Required immediate size in bytes

Instr. Description I-size *
2 register instructions

MOVE Copy value from one register to other 0
ADD Arithmetical addition 0
SUB Arithmetical subtraction 0
AND Logical AND 0
OR Logical OR 0
XOR Logical XOR 0
MUL Arithmetical multiplication 0
DIV Arithmetical division (inc. modulus) 0

1 register instructions
COPY0 Copy intimidate to a register 0 1
COPY1 Copy intimidate to a register 1 1
COPY2 Copy intimidate to a register 2 1
COPY3 Copy intimidate to a register 3 1
ADDC Arithmetical addition with carry bit 0
ADDI Arithmetical addition with immediate 1
SUBC Arithmetical subtraction with carry bit 0
SUBI Arithmetical subtraction with immediate 1
ANDI Logical AND with immediate 1
ORI Logical OR with immediate 1
XORI Logical XOR with immediate 1
CI0 Replace intimidate value byte 0 for next instruction 1
CI1 Replace intimidate value byte 1 for next instruction 1
CI2 Replace intimidate value byte 2 for next instruction 1
SLL Shift left logical 1
SRL Shift right logical 1
SRA Shift right arithmetical 1
LWHI Load word (high byte) 3
SWHI Store word (high byte, reg. only) 0
LWLO Load word (low byte) 3
SWLO Store word (low byte, stores high byte reg.) 3
INC Increase by 1 0
DEC Decrease by 1 0
GETAH Get ALU high byte reg. (only for MUL & DIV & ROL &

ROR)
0

GETIF Get interrupt flags 0
PUSH Push to stack 0
POP Pop from stack 0
COM Send/Receive to/from com. block 1
BEQ Branch on equal 3
BGT Branch on greater than 3
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Table 9.1.1: Instruction set for RISC processor. * Required immediate size in bytes

Instr. Description I-size *
BGE Branch on greater equal than 3
BZ Branch on zero 2

0 register instructions
CALL Call function, put return to stack 2
RET Return from function 0
JUMP Jump to address 2
RETI Return from interrupt 0
INTRE Set interrupt entry pointer 2

Table 9.1.2: Instructions for OISC processor.

Name Description
Destination Addresses

ACC0 Set ALU source A accumulator
ACC1 Set ALU source B accumulator
BR0 Set Branch pointer register (low byte)
BR1 Set Branch pointer register (high byte)
BRZ If source value is 0, set program counter to branch pointer
STACK Push value to stack
MEM0 Set Memory pointer register (low byte)
MEM1 Set Memory pointer register (middle byte)
MEM2 Set Memory pointer register (high byte)
MEMHI Save high byte to memory at memory pointer
MEMLO Save low byte to memory at memory pointer
COMA Set communication block address register
COMD Send value to communication block
REG0 Set general purpose register 0
REG1 set general purpose register 1

Source Addresses
NULL Get constant 0
ALU0 Get value at ALU source A accumulator
ALU1 Get value at ALU source B accumulator
ADD Get Arithmetical addition of ALU sources
ADDC Get Arithmetical addition carry
ADC Get Arithmetical addition of ALU sources and carry
SUB Get Arithmetical subtraction of ALU sources
SUBC Get Arithmetical subtraction carry
SBC Get Arithmetical subtraction of ALU sources and carry
AND Get Logical AND of ALU sources
OR Get Logical OR of ALU sources
XOR Get Logical XOR of ALU sources
SLL Get ALU source A shifted left by source B
SRL Get ALU source A shifted right by source B
ROL Get rolled off value from previous SLL instance
ROR Get rolled off value from previous SRL instance
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Table 9.1.2: Instructions for OISC processor.

Name Description
MULLO Get Arithmetical multiplication of ALU sources (low byte)
MULHI Get Arithmetical multiplication of ALU sources (high byte)
DIV Get Arithmetical division of ALU sources
MOD Get Arithmetical modulus of ALU sources
EQ Check if ALU source A is equal to source B
GT Check if ALU source A is greater than source B
GE Check if ALU source A is greater or equal to source B
NE Check if ALU source A is not equal to source B
LT Check if ALU source A is less than source B
LE Check if ALU source A is less or equal to to source B
BR0 Get Branch pointer register value (low byte)
BR1 Get Branch pointer register value (high byte)
PC0 Get Program counter value (low byte)
PC1 Get Program counter value (high byte)
MEM0 Get Memory pointer register value (low byte)
MEM1 Get Memory pointer register value (middle byte)
MEM2 Get Memory pointer register value (high byte)
MEMHI Load high byte from memory at memory pointer
MEMLO Load low byte from memory at memory pointer
STACK Pop value from stack
ST0 Get stack address value (low byte)
ST1 Get stack address value (high byte)
COMA Get communication block address register value
COMD Read value from communication block
REG0 Get value from general purpose register 0
REG1 Get value from general purpose register 1
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