
University College London
Department of Electronic and Electrical Engineering

Performance characterisation of
8-bit RISC and OISC architectures

Author:
Mindaugas

Jarmolovičius
zceemja@ucl.ac.uk

SN: 17139494

Supervisor:
Prof. Robert

Killey
r.killey@ucl.ac.uk

Second Assessor:
Dr. Ed

Romans
e.romans@ucl.ac.uk

A BEng Project Final Report

April 20, 2020

mailto:zceemja@ucl.ac.uk
mailto:r.killey@ucl.ac.uk
mailto:e.romans@ucl.ac.uk

Contents
1 Abstract 2

2 Introduction 2
2.1 Aims and Objectives 2
2.2 Related Work 2
2.3 Project contents 3

3 Goals and Objectives 3
3.1 RISC Processor 4
3.2 OISC Processor 4
3.3 Design Criteria 4
3.4 Benchmark 4

4 Theory and Analytical Bases 4
4.1 RISC Processor 4

4.1.1 Pipelining 4
4.1.2 Multiple cores 5

4.2 OISC Processor 5
4.2.1 OISC Pipelining . . . 6

4.3 Predictions 6
4.3.1 Execution time . . . 6
4.3.2 Instruction Space . . 7
4.3.3 Resources 7

5 Technical Method 7
5.1 Machine Code 7

5.1.1 RISC Machine Code 7
5.1.2 OISC Machine Code 8

5.2 Data flow 9
5.2.1 RISC Datapath . . . 9
5.2.2 OISC Datapath . . . 10
5.2.3 OISC Datapath Im-

plementation Problems 10
5.3 Stack 10

5.3.1 RISC Stack 11
5.3.2 OISC Stack 11

5.4 Program Counters 11
5.4.1 RISC Program Counter 12
5.4.2 OISC Program Counter 12

5.5 Arithmetic Logic Unit . . . 13
5.5.1 OISC ALU 14
5.5.2 RISC ALU 14

5.6 Program Memory 15
5.6.1 RISC Program Memory 15
5.6.2 OISC Program Memory 15

5.7 Instruction decoding 15
5.7.1 RISC IMO 16

5.7.2 OISC Instruction de-
coding 17

5.8 Assembly 17
5.9 System setup 18

6 Results and Analysis 19
6.1 FPGA logic component com-

position 19
6.2 Power analysis 20

6.2.1 Activity Factor . . . 21
6.3 Benchmark Programs 21

6.3.1 Instruction composition 21
6.3.2 Performance 23
6.3.3 Program space . . . 24

6.4 Maximum clock frequency . 25
6.5 Future work 25

7 Conclusion 26

8 Appendix 29
8.1 Processor instruction set tables 29

1

1 Abstract
One Instruction Set Computer (OISC),
commonly implemented as Transport Trig-
gered Architectures (TTAs) is a promis-
ing architecture that is successfully used
in Application-Specific Instruction Set Pro-
cessors (ASIPs) exploiting operation style
parallelism, while keeping simplicity and
flexibility. There is a lack of research in
general purpose OISC with single data-
instruction bus that could be used in lower
power and performance comparable to a
8bit microcontroller using traditional Re-
duce Instruction Set Computer (RISC) ar-
chitecture. The paper designs two novel
8bit RISC and OISC processors, and in-
vestigates their characteristics and perfor-
mance when implemented on FPGA. OISC
required only a half of logic elements com-
paring to RISC, however it takes 71% longer
to execute designed benchmark, showing
that OISC would need more than one data-
instruction bus to outperform RISC.

2 Introduction
Since the 70s there has been a rise of many
processor architectures that try to fulfil
specific performance and power application
constraints. One of more noticeable cases
are ARM RISC architecture being used in
mobile devices instead of the more popu-
lar and robust x86 CISC (Complex Instruc-
tion Set Computer) architecture in favour
of simplicity, cost and lower power con-
sumption [1, 2]. It has been shown that in
low power applications, such as IoTs (Inter-
net of Things), OISC implementation can
be superior in power and data through-
put comparing to traditional RISC archi-
tectures [3, 4]. This project proposes to
compare two novel RISC and OISC 8bit ar-
chitectures and compare their performance,
design complexity and efficiency.

2.1 Aims and Objectives
The project has three main objectives:

1. Design and build a RISC based proces-
sor.

2. Design and build an OISC based pro-
cessor.

3. Design and perform a fair benchmark
on both processors.

2.2 Related Work
This section goes through supporting the-
ory of RISC and OISC architectures, and
their comparison.

The principal functions of general OISC
architecture should have advantage in per-
formance and power consumption while
having lower transistor count. There are
several theoretical models to implement a
processor using only a one instruction, most
important models are subtract and branch,
MOVE and half-adder architectures [5].

Some researches have proven benefits of
the subtract and branch architecture over
the RISC:
• Using an OISC SUBLEQ (SUBtract and
jump if Less or EQuial to zero) as a copro-
cessor for the MIPS-ISA processor to em-
ulate the functionality of different classes
shows desirable area/performance/power
trade-offs [4].
• Comparing an OISC SUBLEQ multicore
to a RISC achieves better performance and
lower energy for streaming data processing
[3].

Looking at the OISC MOVE type, it has
been researched since early 90s. It has been
shown that the OISC MOVE can benefit of
a VLIW (very large instruction word) ar-
rangement, classifying it as a SIMO (single
instruction, multiple operation) or a SIMT
(single instruction, multiple transports) ar-
chitectures. The problem with all of these
arrangements is that they exhibit poor or
complex hardware utilization. OISC MOVE
has been proposed as a design framework

2

enabling a lower complexity, better hard-
ware utilization, and a scalable performance
[6]. In this framework a TTA is proposed
which describes how a single instruction
should transport the data. To support
theoretical benefits, a MOVE32INT TTA has
been designed [7] and proven to be superior
architecture to the RISC. Using a 1.6µm
fabrication technology, RISC has achieved
20MHz clock with 20Mops/second, while
MOVE32INT implemented using SoGs (Sea of
Gates) achieved 80MHz with 320Mops/sec-
ond [8].

The TTA framework as further used
in other researches to implement ASIPs
to solve various problems. Some rele-
vant examples are RSA calculation [9]; ma-
trix inversion [10]; Fast Fourier Transform
(FFT) [11]; IWEP, RC4 and 3DES encryp-
tion [12]; Parallel Finite Impulse Response
(FIR) filter [13]; Low-Density Parity-Check
(LDPC) encoding [14]; Software Defined
Radio (SDR) [15]. One of the most re-
cent researches use TTA architecture to
solve Compressive Sensing algorithms. Re-
search showed 9 times of energy efficiency to
that of FPGA implemented NIOS II pro-
cessor, and theoretical 20 time energy ef-
ficiency that of ARM Cortex-A15 [16]. In
this particular research however, used ARM
Cortex-A15 with 28nm Metal Gate CMOS
technology, compares to TTA implemented
on Altera Cyclone IV FPGA with 60nm Sil-
icon Gate CMOS technology. Both pro-
cessor implementations cannot be directly
compared.

Most of these researches show that TTA
has a greater power efficiency, a higher clock
frequency and a lower logic resource count.

These benefits come with an expense,
VLIW has bigger instruction word, there-
fore a bigger program size. TTA espe-
cially suffers from this due to the redun-
dant instructions. Some proposed solutions
are variable length instructions and instruc-
tion templates, which reduced program size
between 30% and 44% [17, 18]; a com-
pression based on arithmetic coding [19];

and a method to remove redundant instruc-
tions [20]. Software is another difficulty as
the compiler need to take additional steps
for the data transportation optimisations.
TTA software can be easily exploited how-
ever, to embed a software pipelining and
parallelism without need of the extra hard-
ware [21].

With the proposed MOVE framework,
hardware utilisation shown to be improved
by reducing transition activity [22], reduc-
ing interconnects shown saving 13% of en-
ergy [23] on an small scale. A novel archi-
tecture named SynZEN also showed a fur-
ther improvements by using an adaptable
processing unit and a simple control logic
[24].

2.3 Project contents
Section 3 will go more in details behind the
motivation and project decisions based on
Related Work. Section 4 explains theory
and result predictions. Section 5 explains
both processor design choices and how each
processor part is implemented on OISC and
RISC processor. It also includes assem-
bler design and system setup. In section 6,
results will be discussed, including bench-
mark methods and future work. Summary
and conclusion of design and results can be
found in section 7. Appendix in section 8 in-
cludes any other information, such as both
processor instruction set.

3 Goals and Objectives
This project can be classified as a Design
and Construction type, which explores al-
ternative designs of a processor architecture
and microarchitecture. Main goals are:

1. Study and explore computer architec-
tures, SystemVerilog and the assembly
language.

2. Compare how well an OISC MOVE ar-
chitecture would perform in a low

3

performance microcontroller applica-
tion comparing to equivalent and most
commonly used RISC architecture.

3. View an alternative method of using
OISC MOVE in a SISO (single instruc-
tion, single operation) structure, com-
paring to more commonly implemented
TTAs VLIW architectures that are ei-
ther a SIMO or a SIMT structure.

3.1 RISC Processor
The RISC architecture will be mainly based
on MIPS architecture explained in [25], ex-
cept it this RISC processor would have 8bit
data bus, four general purpose registers and
would have multiple optimisations related
to 8bit limits. Some of minimalistic design
ideas was also from [5].

3.2 OISC Processor
OISC MOVE has many benefits from VLIW
and SIMO or SIMT design, however there is
a lack of research investigating and compar-
ing more general purpose OISC MOVE 8bit
processor with a short instruction word and
a SISO configuration. The main theory for
building OISC architecture will be based on
[5].

3.3 Design Criteria
In order to fairly comparison between both
architectures, a common design criteria is
set:
• Minimal instruction size

• Minimalistic design

• 8bit data bus width

• 16bit ROM address width

• 24bit RAM address width

• 16bit RAM word size
When constructing these points, time and
equipment resources were taken into the
consideration.

3.4 Benchmark
This benchmark includes different algo-
rithms that are commonly used in 8bit mi-
crocontrollers, IoT devices or similar low
power microprocessor applications.

4 Theory and Analytical
Bases

In this section differences in RISC and
OISC are explained. It includes predictions
and theory behind it.

4.1 RISC Processor
In this project, proposed RISC is mainly
based on MIPS microarchitecture [25]. Fig-
ure 4.1.1 represents a simplified diagram of
a proposed RISC processor. In this archi-
tecture, program data travels from a pro-
gram memory to the control block where
instruction is decoded. Then, control block
further decides how data is directed in the
datapath block. Such structure requires a
complicated control block and additional
data routing blocks. Depending on in-
struction, control block sets ALU, register
file, memory operations and how data flows
from one to other. Therefore, if none of the
blocks are bypassed, data can flow though
every single of these blocks, creating a long
chain of combinational logic and increas-
ing the critical path. However, this en-
ables great flexibility allowing multiple op-
erations to happen during a single step, for
example load value from register to mem-
ory, while address value is immediate offset
by another register value using the ALU. In
order to increase performance of such pro-
cessor, pipelining or multiple cores may be
used.

4.1.1 Pipelining

Tc =tpcq + tROM + tregister+

trouting + tALU + tRAM + tsetup
(1)

4

Figure 4.1.1: Abstract diagram of proposed RISC structure

Equation 1 shows the maximum proces-
sor cycle period Tc which depends on com-
binational logic delay of every logic block,
flip-flop time of propagation from clock to
output of synchronous sequential circuit tpcq
and flip-flop setup time tsetup.

Tcp = max


tpcq + tROM + tsetup,
tpcq + tregister + tsetup,
tpcq + tALU + tsetup,
tpcq + tRAM + tsetup

 (2)

Pipelinig separates each processor’s dat-
apath block with a flip-flop. This changes
critical path therefore reducing cycle pe-
riod. A pipelined processor cycle period Tcp

is represented in the equation 2. Such mod-
ification could theoretically increase clock
frequency by 2 or 3 times.

Pipelining, however, introduces other de-
sign complications. Instructions that de-
pend on each other, for example an oper-
ation R = A+B +C needs to be executed
in two steps, t = A+B and R = t+C. Sec-
ond step depends upon previous step result.
Therefore, additional logic is required to de-
tect such dependencies and bypass datap-
ath stages, or stall pipelining. Furthermore,
breaching would also require stalling; tem-
porary saving datapath stage and restoring
it if needed when branching is concluded;

or further branch prediction logic. Such
dependency and branching issue requires a
timing hazards prevention logic which in-
creases processor complexity and required
resources.

4.1.2 Multiple cores

A multicore system is a solution to increase
processor throughput by having multiple
datapaths and control logic instances, each
running separate instructions. Cores share
other system resources such as RAM.

A multicore processor requires software
adjustments as each processor’s core would
execute separate programs. Therefore,
some synchronisation between them is
needed. A single additional core would
also double the control and datapath blocks,
substantially increasing resource require-
ments too. In addition, programs most of-
ten cannot be perfectly divided to parallel
tasks due to some result dependencies be-
tween each subtask. Therefore, doubling
processor core count would not likely result
double the performance.

4.2 OISC Processor
Figure 4.2.1 represents simplified structure
of an OISC MOVE architecture. In the
simplest case, processor has a pair of buses

5

Figure 4.2.1: Abstract diagram of proposed OISC structure

data and instruction. An instruction bus
has a source and destination address that
connects two parts of processor via a data
bus. This mechanism allows for the data
to flow around processor. Computation
is accomplished by setting accumulators at
destination addresses and taking computed
values from the source address. Other ac-
tions can be performed by destination node,
for instance check value for branching or
sending data to memory.

4.2.1 OISC Pipelining

The maximum cycle period of such proces-
sor microarchitecture can be found in Equa-
tion 3.

tCL = max

tregister,
tALU ,
tRAM



Tcp = max

(
ten + tbuf ,

tpcq1

)
+

+ tpcq2 + tCL + tsetup

(3)

Where ten is period to check if instruc-
tion bus address match, tbuf is period for
source buffer to output value into the data
bus, tpcq2 is propagation period for program

memory, tCL represents the longest propa-
gation period though a logic block, tsetup is
the setup time inside logic block. tpcq1 and
tpcq2 are clock to output delay for the se-
quential logic connecting source buffer and
memory connecting instruction bus, respec-
tively.

4.3 Predictions
Comparing RISC and OISC, the maximum
processor cycle period of OISC is almost
equivalent to the pipelined RISC, with ad-
dition of enable, buffer and additional ROM
delays: max (ten + tbuf , tpcq1).

Further more, due to the nature of pro-
cessor no additional timing hazard preven-
tion logic is needed, making this much sim-
pler design. OISC tCL pipelining can be also
introduced to components that has high
propagation delay. For instance, multipli-
cation in an ALU could be pipelined into
two stages. When setting ALU accumula-
tors, software could be designed to retrieve
multiplied result only after two cycles. This
can further reduced required resources.

4.3.1 Execution time

OISC requires taking extra steps to perform
basic functions. ALU, branch or memory

6

operations needs accumulator values to be
set first to compute an output. A single
data-instruction bus OISC therefore is ex-
pected to be slower executing the same task
as RISC.

4.3.2 Instruction Space

RISC has compact instructions, as a single
instruction can carry a small opcode, reg-
ister addresses and optionality a multiple
word immediate value. OISC has a bigger
instruction overhead as it can only carry a
source and destination address, meaning it
can operate on only one register or immedi-
ate value in a single instruction. Therefore,
it is expected the OISC will require more
instruction space to perform the same func-
tion as RISC.

4.3.3 Resources

OISC does not have a control block which
contains how data travel in datapath. It
also does not have multi-address register file
and further routing logic within a datapath.
This indicates that the OISC should require
less logic elements to implement. This also
should result in lower power consumption.

5 Technical Method
This section describes methods and design
choices used to construct RISC and OISC
processors.

5.1 Machine Code
Machine code subsection talks about in-
structions and how they are encoded.

5.1.1 RISC Machine Code

One of the aim is to ensure instruction size
to be as minimal as possible. RISC instruc-
tions decided to be 8bits long with an op-
tional additional immediate value from one
to three bytes. Immediate value operation
is expanded upon in section 5.7.

The decision was made to have an in-
struction to compose of operation code and
two operands first source & destination and
second only source. This is more similar
to x86 architecture rather than to MIPS.
Three possible combinations of register ad-
dress sizes are possible, from one to three
bits in order to fit them in a single instruc-
tion. Two bits was the chosen option as it
allowed having four general purpose regis-
ters which is sufficient for most applications,
and allowed four bits for operation code al-
lowing up to 16 instructions.

Due to a small amount of possible op-
eration codes and not all instructions re-
quiring operate with two operands (for ex-
ample, JUMP instruction does not need any
operands, set immediate value only needs
one operand), other two type instructions
are added to the design with one and zero
operands. See figure 5.1.1. This enabled
processor to have 45 different instructions
while maintaining minimal instruction size.
Final design has:

• 8 2-operand instructions

• 32 1-operand instructions

• 5 0-operand instructions

7

Full list of RISC instructions is listed in Ta-
ble 8.1.1 in an Appendix section.

2 operands: 0 1 2 3︸ ︷︷ ︸
op. code

4 5︸ ︷︷ ︸
dst.

6 7︸ ︷︷ ︸
src.

1 operand: 0 1 2 3︸ ︷︷ ︸
op. code

4 5︸ ︷︷ ︸
dst.

6 7︸ ︷︷ ︸
op. c.

0 operands: 0 1 2 3 4 5 6 7︸ ︷︷ ︸
operation code

Figure 5.1.1: RISC instructions compo-
sition. Number inside box represents bit in-
dex. Destination (dst.) bits represents of
source and destination register address.

5.1.2 OISC Machine Code

As OISC operaten on a single instruction,
composition of instruction mainly consists
of two parts source and destination. In or-
der to allow higher instruction flexibility, an
immediate flag has been added which sets
source address to represent an immediate
value. The composition of finalised machine
code is shown in figure 5.1.2.

0︸︷︷︸
imm.

1 2 3 4︸ ︷︷ ︸
destination

5 6 7 8 9 10 11 12︸ ︷︷ ︸
source

Figure 5.1.2: OISC instruction composi-
tion. Number inside box represents bit in-
dex.

Decision was made for source address to
be eight bits, to match immediate value and
data bus width. Destination address was
chosen to be as minimal as possible, leaving
only four bits and 16 executable destina-
tions. The final design has 15 destination
and 41 source addresses. This is not the
most space efficient design as 41 source ad-
dresses could be implemented with only six
bits, not using two bits every time a non-
immediate source is used.

Full list of OISC sources and destinations
is listed in Table 8.1.2 in an Appendix sec-
tion.

8

5.2 Data flow
5.2.1 RISC Datapath

Figure 5.2.1: Digital diagram of RISC datapath

Figure 5.2.1 above represents a partial RISC datapath. This diagram can be extends to Program counter, Stack pointer and Immediate
Override logics are shown in figures 5.4.1, 5.3.1 and 5.7.1 respectively. CDI (Control-Data Interface) is a HDL (Hardware Description
Language) concept that connect datapath and control unit together. The immediate value is provided to datapath by IMO block
described in section 5.7.1.
Data to register file is selected and saved with MUX0. This data is delayed by one cycle with R2 to match timing that of data
taken from the memory. If LWLO or LWHI instructions are executed, MUX1 select high or low byte from memory to read. In order to
compensate for timing, as value written to register file is delayed by one cycle, register file has internal logic that outputs wr_data to
rd_data1 or/and rd_data2 immediately if wr_en is high and rd_addr1 or/and rd_addr2 matches wr_addr, making it act more like latch.

9

MUX2 allows override ALU source B,
R3 and MUX3 enables control unit to en-
able ALU carry in bit, allowing multi-word
number addition/subtraction. MUX4 and
MUX5 allows sending data to the COM
block with COM instruction. If any other
instruction performed, then 0x00 byte for
COM address and data is sent, indicating
no action. Data can be stored to memory
only with a SWLO instruction. It writes high
byte value whatever is stored in R4 regis-
ter. This buffer can be written to using a
SWHI instruction. Therefore, to change only
a single byte in a particular memory loca-
tion, other byte has to be fetched in ad-
vanced and used in a SWLO or SWHI instruc-
tion. MUX6 selects memory address value
from the imm or stack pointer.

5.2.2 OISC Datapath

OISC datapath only consists of instruction-
data bus and a small circuit that connect
them to logic blocks that computes the
data. These logic blocks can represent ALU
operation combinational logic, or any other
part of a processor as shown in Figure 4.2.1.

Figure 5.2.2 represents a common desti-
nation circuit. It checks if a particular logic
block destination address matches one in in-
struction bus, then enables latch and also
sets flag that destination is used to the fur-
ther logic.

Figure 5.2.2: OISC processor data bus to
destination connection logic

Similarly, Figure 5.2.3 represents a source
circuit connecting output of such logic
block. Logic block can be assumed to only
contain combinational logic, therefore a reg-
ister is placed at the output of it. A buffer
BUF1 is used to connect data in a register
REG1 to the data bus. This ensures that

only one bus driver is present, ensuring no
data collision.

Figure 5.2.3: OISC processor data bus to
source connection logic

The general timing is designed so that
the information at the source is immedi-
ately ready in data bus at rise of the pro-
cessor clock. The source is connected to
the destination connection where combina-
tional logic is present.

5.2.3 OISC Datapath Implementa-
tion Problems

The complete implementation using latches
for destination logic was not successful.
Latches did not operate correctly when syn-
thesised onto FPGA. This issue might be
caused by some timing problem between
some combination of source and destination
logic. The exact cause was not resolved.

As a quick solution, latches at destina-
tion has been replaced with a clocked regis-
ter that is triggered at negative clock edge,
which is opposite to source register trigger.
This solution has resolved issue, however
it effectively reduced the period that data
can propagate though logic blocks between
source and destination by two.

5.3 Stack
This section describes dedicated logic for
stack pointer control at both processors.
The stack pointer starts from the highest
memory address value and "stacks" towards
lower address values. Both designs were

10

Figure 5.3.1: Digital diagram of RISC stack pointer logic

simplified to only operate on two byte ad-
dresses, meaning that stack pointer has a
constant FFh value at the least significant
byte.

5.3.1 RISC Stack

The RISC processor implements the stack
pointer that is used in PUSH, POP, CALL and
RET instructions. Figure 5.3.1 represents
the logic diagram for stack pointer. This
circuit also supports pc_halted signal from
the program counter to prevent the stack
pointer from being added by 1 twice during
the RET instruction.

One of the problems with the current
stack pointer implementation is 8bit data
stored in 16bit memory address, wasting
a byte, except when storing the program
pointer with CALL instruction. This can be
improved by adding a high byte register,
however then it would cause complications
when a 16bit program pointer is stored with
CALL instruction. This can still be improved
with a more complex circuit, or by using
memory cache with 8bit data input. How-
ever, with current implementation this does
not affect processor comparison, it only in-
creases stack size in memory.

5.3.2 OISC Stack

Stack pointer circuit in OISC is very simi-
lar to RISC. When reset, push or pop flags
are set, it changes the state of stack pointer
by adding or subtracting its value by one,
or resetting it to default. Logic diagram is
shown in Figure 5.3.2.

Logic diagram of stack control unique to
OISC processor is shown in Figure 5.3.3.
Push and pop flags are taken from the
source and destination logic. A cached
value of last stored value is kept, so that it
would be immediately available on source
request. Pop flag is delayed by one clock
cycle. This ensures that once stack value
is popped, lower stack value is written into
the cache during next the clock cycle. Note
that there is an issue with this design, stack
source or destination instruction cannot be
used together with other stack or memory
operations as it creates a collision accessing
system memory at the same time. This col-
lision can be avoided with software however.

5.4 Program Counters
In this subsection, program counter and
their differences will be described.

11

5.4.1 RISC Program Counter

Figure 5.4.1 represents the digital diagram
for a program counter. There are a few key
features about this design: it can take val-
ues from memory for RET instruction; im-
mediate value (PC_IMM2 is shifted by one
byte to allow BEQ, BGT, BGE instructions as
first immediate byte used as ALU source
B); it can jump to an interrupt address; it
produces a pc_halted signal when memory
is read (RET instruction takes two cycles,
because cycle one fetches the address from
stack and second cycle fetches the instruc-
tion from the instruction memory).

5.4.2 OISC Program Counter

OISC program counter is much simpler than
RISC, as it does not have variable length
instruction, delay flags for RET operation,
or logic for selecting branch source address.

Figure 5.4.2: Digital diagram of OISC
program counter

Looking at Figure 5.4.2 bottom, the basic
operation is to just add one to previous pro-
gram counter with ADDER1 and REG1,
reset it to zero at reset with MUX2. Two
destination logic blocks are used as accu-
mulators to store branch address. Once an
instruction with the BRZ destination is exe-
cuted, comparator EQ2 checks if the data
bus value is equal to zero. If this condi-

Figure 5.3.2: Digital diagram of OISC stack pointer logic

Figure 5.3.3: Digital diagram of OISC stack control logic

12

Figure 5.4.1: Digital diagram of RISC program counter

tion is met, it enables MUX1 and overrides
program counter to address stored in BR0
and BR1 accumulators. Unlike in RISC how-
ever, it requires three instructions to set
new address and jump. Similarly, CALL
and RET requires five and three instruc-
tions respectively. RISC equivalent instruc-
tions are show in Listing 1.

Listing 1: OISC assembly code emulating
RISC JUMP, CALL and RET instructions.
%macro JUMP 1

BR1 %1 @1
BR0 %1 @0
BRZ 0x00

% endmacro

%macro CALL 1
BR1 %1 @1
BR0 %1 @0
STACK %% return @1
STACK %% return @0
BRZ 0x00
%% return:

% endmacro

%macro RET 0
BR0 STACK
BR1 STACK
BRZ 0x00

% endmacro

5.5 Arithmetic Logic Unit
This section will discuss ALU implementa-
tions of both processors. For fair compari-
son between OISC and RISC, ALU in both
system will have the same capabilities as

13

described in Table 5.5.1.

Name Description
ADD Arithmetic addition (inc. carry)
SUB Arithmetic subtraction (inc.

carry)
AND Bitwise AND
OR Bitwise OR

XOR Bitwise XOR
SLL Shift left logical
SRL Shift right logical
ROL Shifted carry from previous SLL
ROR Shifted carry from previous SRL
MUL Arithmetic multiplication
DIV Arithmetic division

MOD Arithmetic modulo

Table 5.5.1: Supported ALU commands
for both processors

5.5.1 OISC ALU

Due to the structure of OISC processor,
ALU source A and B are two latches that
are written into when ALU0 or ALU1 des-
tination address is present. ALU sources
are connected with every ALU operator and
performed in single clock cycle. This value

is stored in a register so that it would be
immediately available in a next clock cy-
cle as a source data, as explained in OISC
Datapath Section. Figure 5.5.1 represents a
logic diagram of ALU with only an addition
and multiplication operations present. Note
that the output of EQ3 is connected to en-
able of REG3, enabling output of carry to
be only read after ADD source is requested.
Similar configuration is also used for SUB,
ROL and ROR operations.

5.5.2 RISC ALU

RISC processor has very similar structure
to OISC, however with two exceptions. In-
puts to ALU comes from datapath data
router logic. Output buffers are replaced by
one multiplexer that selects a single output
from all ALU operations. Another point is
that RISC ALU output is 16bit, higher byte
saved in "ALU high byte register" for MUL,
MOD, ROL and ROR operations. This register
is accessible with GETAH instruction.

Figure 5.5.1: Digital diagram of OISC partial ALU logic

14

5.6 Program Memory
This section describes how instruction
memory (ROM) is implemented for both
processors.

5.6.1 RISC Program Memory

In order to allow a dynamic instruction size
from one to four bytes, a special memory
arrangement is made. Such system requires
accessing any a word (8bits) from memory
and next three words, meaning that mem-
ory cannot simply be packed to four word
segments. To achieve desired functionality,
four ROM blocks been utilised, each con-
taining one fourth of sliced original data.
Input address is offset by adders ADDER1-
3 and further divided by value four, which is
done by removing two least significant bits
at addr0-3. Before concatenating output
of each ROM block into final four bytes,
ROM outputs q0-3 are rearranged depend-
ing on ar signal. Note that MUX1-4 each
input is different, this may be better visu-
alised with Verilog code in listing 2.

Listing 2: RISC sliced ROM memory mul-
tiplexer arrangement Verilog code
case(ar)

2’b00: data ={q3 ,q2 ,q1 ,q0};
2’b01: data ={q0 ,q3 ,q2 ,q1};
2’b10: data ={q1 ,q0 ,q3 ,q2};
2’b11: data ={q2 ,q1 ,q0 ,q3};

endcase

5.6.2 OISC Program Memory

OISC instructions are fixed 13 bits, this
non-standard memory word size causes
some difficulties. To implement ROM in
FPGA, Altera Cyclone IV M9K config-
urable memory blocks were used. Each
blocks as 9kB of memory, each set as
1024x9bit configuration. Combining three
these blocks together yields 27bits if read-
able data in single clock cycle. To store in-
struction code to such configuration, pairs
of instruction machine code sliced into three
parts plus one bit for parity check, see figure
5.6.2. Circuit extracting each instruction is
fairly simple, shown in figure 5.6.3.

5.7 Instruction decoding
This section describes RISC and OISC dif-
ferences between instruction decoding and
immediate value handling.

Figure 5.6.1: Digital diagram of RISC sliced ROM memory logic

15

ROM0 ROM1 ROM2︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26︸ ︷︷ ︸︸ ︷︷ ︸︸︷︷︸

InstrA InstrB parity

Figure 5.6.2: OISC three memory words composition. Number inside box represents
bit index.

Figure 5.6.3: Digital diagram of OISC instruction ROM logic

5.7.1 RISC IMO

Already described in previous section 5.6,
instruction from the memory comes as four
bytes. The least significant byte is sent to
control block, other three bytes are sent to
the immediate override block (IMO) shown
in figure 5.7.1. These three bytes are la-
belled as immr.

The IMO block is a solution to change
the immediate sent further to the proces-
sor with a value from register. This enables
dynamically calculated memory pointers,
branches that are dependent on a regis-
ter value or any other function that needs
instruction immediate value been replaced
by calculated register value. IMO is con-
trolled by control block and cdi.imoctl sig-
nal, which is changed by CI0, CI1 and CI2
instructions. When a signal is 0h, this block
is transparent connecting immr directly to
imm. When any of CI instructions exe-
cuted, one of IMO register is overridden by
reg1 value from the register file. In order
to override two or three bytes of immedi-

ate, CI instructions need to be executed in
order. Only for one next instruction after
last CI will have immediate bytes changed
depending on what are values in IMO reg-
isters.
This circuit has two disadvantages:

1. Overriding immediate bytes takes one
or more clock cycles,

2. At override, immr bytes are ignored
therefore they are wasting instruction
memory space.

Second point can be resolved by designing
a circuit that would subtract the amount
of overridden IMO bytes from pc_off sig-
nal (program counter offset that is de-
pendent on i-size value) at the program
counter, therefore effectively saving instruc-
tion memory space. This solution however,
would introduce a complication with the
assembler as additional checks would need
to be done during assembly compilation to
check if IMO instruction are used.

16

Figure 5.7.1: Digital diagram of RISC immediate override system

Figure 5.7.2: Digital diagram of OISC instruction decoder

5.7.2 OISC Instruction decoding

OISC immediate value is set in instruction
decoder shown in figure 5.7.2. Decoder op-
eration is simple - instruction machine code
is split into three parts as described in 5.1.2.
If instruction source address value is 00h, it
connects data bus with constant zero value
via MUX2. If immediate flag is set, source
address value is set to 00h in order to make
sure no other buffer source connects to data
bus. Instruction source address then is con-
nected to databus via MUX2 and BUF1.

5.8 Assembly
There are two steps between the assembly
code and its execution on a processor. First,
it needs to be converted into a binary ma-
chine code. Secondly, binary data needs
to be sliced to different parts described in
section 5.6. These slices also need to be
converted into appropriate formats, differ-
ent for simulation, HDL synthesis and di-
rect memory flashing.

A universal assembler was imple-
mented using python for both processors.
Flowchart in figure 5.8.1 represents general

17

structure of assembler process. It splits
assembly file into three parts sections,
definitions and macros. Definitions are
keywords mapped to values which are
saved in a global label dictionary. Macros
are a chunk of assembly code and are used
as templates.

There are only two sections implemented
in assembler - .text and .data. Sec-
tion .text contains all machine instructions
which will be stored in program ROM mem-
ory. Section .data is used for global and
static data, and it will be written into RAM
memory. This section contains values such
as strings and structures uninitialised data
as labels which data is RAM memory loca-
tion.

Section .text code is processed line by
line. Each line may have label and an in-
struction or macro name following with ar-
gument values. If line contains a label, it
is stored into global label dictionary with
current line program address as a value. If
line has a macro, line is replaces by macro
code. Otherwise, instruction name is de-
coded and stored in an instruction list with
original arguments.

After all instruction lines are completed,
each stored instruction arguments are pro-
cessed, labels are replaced with binary val-
ues, any other processing is done such as
addition by constant, byte selection, etc.
Completed list is then saved as a raw bi-
nary. Similarly, .data section labels also
replaced and it is saved as binary data.

Figure 5.8.1: Flow chart of assember
converting assembly code into machine code
and memory binary.

5.9 System setup
This section will describe how system is
setup.

Processors are implemented on Terasic
DE0-Nano board that use Altera Cyclone
IV, EP4CE22P17C6 FPGA, which is man-
ufactured using 60nm fabrication technol-
ogy. The FPGA has embedded mem-
ory structure consisting of M9K memory
blocks columns mentioned in Subsection
5.6.2. These memory structures were used
to implement processors RAM and ROM
memories. Board also has 32MB SDRAM
chip, which initially was intended to be
used. This set design criteria to have 24bit
address space. However, M9K memory was
used instead for flexibility and simplicity.

FPGA has an embedded phase-locked
loop (PLL) stucture that is used to change

18

50MHz input that is generated by on-board
crystal to other frequencies.

DE0-Nano board has an integrated JTAG
port that is used to upload synthesised code
and control additional debugging tools.
Quartus has a "Signal Tap Logic Analyzer"
tool that allow setup probes and sources
within FPGA logic and control them via
JTAG. Another "In-System Memory Con-
tent Editor" tool allows read and modify
M9K memory which enables quick machine
code uploading to the processor on FPGA,
without need to resynthesise HDL code.
This also allow reading RAM content en-
abling easier program debugging.

All Quartus functions can be accessed
via TCL script. This lead to construct-
ing Makefile which allow quick build opera-
tions. Quatus signal and memory tools were
used to write a small program with Python
and Curses library to read and change inter-
nal processor state which allowed easy de-
bugging while writing the programs.

6 Results and Analysis

6.1 FPGA logic component
composition

This subsection looks at specific test and its
results which finds how much FPGA logic
components each processor takes and what
is composition of each part.

The test was performed with Quartus
synthesis tool by recording flow summary
report data. This report includes synthe-
sised design metrics including total logic el-
ements, registers, memory bits and other
FPGA resources. In this test, only pa-
rameters that were recorded are logic ele-
ments and registers. Number of resources
was found by synthesising full processor,
then commenting relevant parts of code, re-
synthesising and viewing changes in the re-
port. Such method may not be the most ac-
curate, because during HDL synthesis, cir-
cuit is optimised and unused connections re-

moved. This means that more of the logic
than commented may be not synthesised.

There are four parts of each processor
that will be tested:

1. Common - processor auxiliary logic
that is used by both processors. It in-
cludes the communication block with
UART, RAM and PLL (Phase-Locked
Loop, for master clock generation).

2. ALU - as described in section 5.5, both
processors have slightly different imple-
mentation of ALU.

3. Memory - the processors memory
management, including stack.

4. Other - reminding processor logic that
was not analysed.

Processors FPGA logic element composition

OISC RISC
0

500

1000

1500

2000

2500

3000

3500

L
o

g
ic

 e
le

m
e

n
ts

COMMON

ALU

MEMORY

OTHER

Figure 6.1.1: Bar graph of FPGA logic
components taken by each processor.

The test results are shown in figures 6.1.1
and 6.1.2. The common logic uses 293 logic
elements and 170 registers. OISC uses 1705
logic elements, while RISC uses 3218. Ex-
cluding common logic, OISC takes 48.3% of
RISC’s logic elements.

19

Processors FPGA register usage composition

OISC RISC
0

100

200

300

400

500

600

700

800

R
e

g
is

te
rs

COMMON

ALU

MEMORY

OTHER

Figure 6.1.2: Bar graph of FPGA register
resources taken by each processor.

OISC uses 726 logic elements, while RISC
uses only 407. Excluding common logic,
OISC uses 78.4% more registers than RISC.

Looking at the composition, OISC ALU
takes 30.2% more logic gates. Figure 6.1.2
shows high number of OISC ALU registers.
This concludes that higher resource usage
in OISC ALU code must be source and des-
tination logic.

Memory logic element composition of
OISC is only 34.4% of RISC’s and 7% lower
for register resources, comparing to RISC.
This indicates that by removing memory
logic for RISC, synthesis tool may removed
also other parts of processor, possibly part
of control block because it mostly contains
combinational logic.

Other logic includes instruction decoding
with ROM, register file, program counter.
RISC exclusively has control block. Note
that OISC uses only three ROM memory
blocks whereas RISC uses four as explained
in section 5.6, however this should make a
minimal difference as M9K memory blocks
are not included in FPGA logic element or
register count. Comparing both processors,
OISC has only 37% of other logic compo-
nents to RISC, however it has 2.28 times
more registers. This shows a logic com-
ponent - register trade-off. OISC source
and destination logic requires more regis-
ters, whereas RISC uses combination logic
in control block in order to control the same

data in datapath.
Much higher logic components in RISC

can be also explained more complicated reg-
ister file, ROM memory logic and program
counter. All of these components has some
additional logic for timing correction or
other extra functionality required by these
block integration into a datapath.

6.2 Power analysis
Power analysis was performed to anal-
yse power consumption of both processors.
This has been accomplished by connecting
FPGA board to a laboratory power sup-
ply with 4V to an external power input.
A shunt resistor with impedance of 1.020Ω
was connected in series to calculate current.
Supply voltage and voltage across shut re-
sistor were measured using an oscilloscope
with a data sampling feature. Three tests
have been performed with different proces-
sor configurations. Between each test a pe-
riod of about 5 minutes was given for FPGA
to reach steady state.

Processor power consumtion

None RISC OISC
358.5

359

359.5

360

360.5

361

P
o

w
e

r
(m

W
)

Figure 6.2.1: Measured power of proces-
sors when implemented on FPGA, running
16bit multiplication function in loop. None
indicates auxiliary-only power.

Figure 6.2.1 represents power results.
First configuration is "None" or auxiliary-
only power, which includes whole FPGA
board, voltage regulators, and synthesised
logic on FPGA required to support a pro-
cessor (such as PLL, UART, Input/Out-
put control, RAM). RISC and OISC bars

20

in the graph indicate processor implementa-
tions on FPGA, each running multiplication
program in a loop. These values also in-
clude auxiliary power plus processor power,
which means that the processor itself takes
relatively small amount comparing to auxil-
iary power, about 0.5%. Result shows that
OISC require 0.4%, which including noise is
almost insignificant result.

During this test clock frequency of 1MHz
was used. Due to equipment unavailabil-
ity, any further tests were not carried out to
investigate power consumption at different
frequencies. Due to constant noise, running
at higher frequency may result in significant
difference between processors.

6.2.1 Activity Factor

An activity factor could be also found us-
ing Equation 4 where P is power, Ctotal is
total gate capacitance and VDD is voltage
supplied to the transistors.

α =
P

Ctotal · f · V 2
DD

(4)

As Ctotal and VDD are constants, measuring
power at different frequencies allows finding
activity factor. This value could be used to
compare how much of a processor circuit is
active. Further design improvements could
be used to optimise power [11, 15, 22, 23].

6.3 Benchmark Programs
A number of and programs have been writ-
ten to test both processors. These involve
simple functions that could be commonly
used in a 8bit processors:

• Printing: Sends data to UART. It in-
cludes waiting until UART is available
for transmission.

• Printing unsinged integer: Uses
binary-coded decimal algorithm to
convert 8 or 16bit binary value to
decimal value and print it.

• 16bit multiplication: Uses simple ma-
trix multiplication.

• 16bit division: Uses Long division algo-
rithm to divide two 16bit numbers, re-
sult including a reminder.

• 16bit modulo: Uses "Russian Peasant
Multiplication" algorithm to perform
Modulo operation with two 16bit num-
bers.

• Prime number calculator: Uses Sieve
of Atkins algorithm [26] to calculate
primer number, operates on 16bit num-
bers and utilise 16bit multiplication
and modulo functions.

6.3.1 Instruction composition

This test is performed to investigate in-
struction composition of each function to
see how similar it is between RISC and
OISC processors.

• MOVE - All instructions that move data
around internal processor registers.

• ALU - Instructions that are used to per-
form ALU operation.

• MEMORY - Instructions that are re-
quired to send/retrieve data from sys-
tem memory, except stack.

• STACK - Instructions that push/pop
data from memory stack.

• COM - Instruction(s) that send/receive
data from communication block.

• BRANCH - Instructions that are used
to make program branching.

• OTHER - Any other instructions.

21

Name Instructions
MOVE MOVE, CPY0, CPY1, CPY2,

CPY3, CI0, CI1, CI2
ALU ADD, ADDI, SUB, SUBI,

AND, ANDI, OR, ORI,
XOR, XORI, DIV, MUL,
ADDC, SUBC, INC, DEC,
SLL, SRL, SRA, GETAH

MEMORY LWLO, LWHI, SWLO, SWHI
STACK PUSH, POP
COM COM

BRANCH BEQ, BGT, BGE, BZ,
JUMP, CALL, RET

Table 6.3.1: RISC processor instruction
groups used in instruction composition test.

Name Destination
MOVE REG0, REG1
ALU ALU0, ALU1

MEMORY MEM0, MEM1, MEM2,
MEMLO, MEMHI

STACK STACK
COM COMA, COMD

BRANCH BR0, BR1, BRZ

Table 6.3.2: OISC processor instruction
desination groups used in instruction com-
position test

Name Instructions
MOVE ALU0, ALU1, REG0,

REG1, PC0, PC1, NULL,
IMMEDIATE

ALU ADD, ADDC, SUB, SUBC,
AND, OR, XOR, SLL, SRL,
EQ, GT, GE, NE, LT, LE,
MULLO, MULHI, DIV, MOD,
ADC, SBC, ROL, ROR

MEMORY MEM0, MEM1, MEM2,
MEMLO, MEMHI

STACK STACK
COM COMA, COMD

BRANCH BR0, BR1

Table 6.3.3: OISC processor instruction
source groups used in instruction composi-
tion test

Each function was executed on a simu-
lated processor, program counter and in-
struction were recorded into file at every
cycle. File recording was accomplished with
SytemVerilog test bench. Start of a record-
ing was triggered when program counter
matched .start location and stopped when
it matched .done location. Code shown in
Listing 3 enabled both locations to be static
and not depend on test function that was
executed.

Listing 3: Assembly frame for executring
tests
setup:

JUMP .start
.done:

JUMP .done
.start:

; Setup values
; Call function
JUMP .done

Each recorded file with function composi-
tion was then further analysed and each in-
struction was grouped. Recorded program
counter was used to find effective program
space. This has been achieved by calcu-
lating unique instances of program counter
and summing up instruction size for each
of them. In RISC, dynamic instruction size
has been taken into account.

From the results in Figure 6.3.1, few
key differences can be seen. Across every
test, OISC has significantly more BRANCH
destination and MOVE source groups.
BRANCH group can be explained by em-
ulated CALL, RET and JUMP instruction ex-
plained in section 5.4.2. High number of
MOVE source group instructions may be
explained by using the immediate values
as a separate source, where RISC uses in-
structions that can integrate immediate as
extra word, such as instruction ADDI. In
most cases ALU group instructions are also
higher than for OISC comparing to RISC.
This shows a lower OISC ALU efficiency,

22

16bit Modulo 0001h % FFFFh

0

5

10

15

20
In

s
tr

u
c
ti
o

n
s

16bit Modulo FFFFh % 0001h

0

200

400

600

16bit Modulo FFFFh % FFFFh

0

20

40

60

In
s
tr

u
c
ti
o

n
s

16bit Multiplication

0

5

10

15

20

Print Character

0

5

10

15

In
s
tr

u
c
ti
o

n
s

Print 16bit unsigned int FFFFh

0

100

200

300

Print 8bit unsigned int 00h

M
O

VE
ALU

M
EM

O
RY

STACK
CO

M

BRANCH

O
THER

0

10

20

30

In
s
tr

u
c
ti
o

n
s

Print 8bit unsigned int FFh

M
O

VE
ALU

M
EM

O
RY

STACK
CO

M

BRANCH

O
THER

0

20

40

60

80

RISC

OISC Destination

OISC Source

Figure 6.3.1: Graph of instruction composition for every benchmark program.

mostly due to a need to move data into the
septate accumulators.

6.3.2 Performance

This subsection investigates time and clock
cycles to run benchmark programs. The
simulation was performed to find a number
of cycles required to execute each function.
Note that prime number calculator was not
simulated due to too complex dynamic na-
ture of program.

Print 16bit decimal and modulo opera-
tion were executed with different input ar-
guments. This allows to see the worst and
the best case scenarios as algorithms length
depend on inputs. This is not the case for

16bit multiplication as its implementation
has no branching, therefore no execution
time dependence on the inputs.

Results are shown in Figure 6.3.2. In
most of the cases, OISC requires around
55-67% more instructions, with some excep-
tions.

23

Processor cycles per function

208
361

618

59 27 52

204

534

1076

99
49 55

Prin
t D

ecim
al 0

000h

Prin
t D

ecim
al F

FFFh

Modulus FFFFh%0001h

Modulus FFFFh%FFFFh

Modulus 0001h%FFFFh

Multip
ly 16bit

0

200

400

600

800

1000

1200

N
u

m
e

r
o

f
c
y
c
le

s
RISC

OISC

Figure 6.3.2: Simulated results of cycles
that taken to perform function.

Another set of benchmarks have been
performed and on both processors once
they been implemented on the FPGA.
Time taken for perform each set has been
recorded. This has been done via UART
connection, a single character was sent to
indicate the start and the stop of a bench-
mark. In order to void a slight timing
variation due low baud rate of UART or
system kernel scheduler unpredictability to
process UART input, each benchmark was
performed with many iterations. Figure
6.3.3 represents results.

Time taken for each benchmark

Prim
e N

umbers

Multip
ly

Modulo 0010h

Modulo FFFFh
BCD

0

10

20

30

40

50

60

70

T
im

e
 (

s
)

RISC

OISC

Figure 6.3.3: Time taken perform each
benchmark on FPGA at 1MHz clock.

Results indicate that on average OISC
takes about 71% longer to execute same
benchmark. This is close to results found

with simulation. Prime number calculator
have taken 3.26 times longer.

Benchmarks include:

• Prime Numbers: Calculate every
prime number between 5 to 65536.

• Multipy: 16bit multiplication iterated
65536 times.

• Modulo 0010h: 16bit 0010h modulo
that operated on every number be-
tween 0 and 65536.

• Modulo FFFFh: 16bit FFFFh modulo
that operated on every number be-
tween 0 and 65536.

• BDC: Encoded 16bit binary to ASCII
decimal number without printing.

6.3.3 Program space

Data collected from previous instruction
composition results were also used to find
effective program size. Effective program
size only includes instruction that been ex-
ecuted depending on argument, meaning
that it does not fully represent complete
function. A specific input to a function
might cause branching and avoiding some
function code, which would not be added to
effective program size. In this test, the main
objective is to look difference in instruction
size required to execute the same function,
therefore not representing full program size
is irrelevant.

24

Benchmark functions effective program size
M

o
d
 0

0
0
1
h
 %

 F
F
F
F
h

M
o
d
 F

F
F
F
h
 %

 0
0
0
1
h

M
o
d
 F

F
F
F
h
 %

 F
F
F
F
h

1
6
b
it

m
u
lti

p
ly

P
ri
n
t
ch

a
r

P
ri
n
t
u
in

t1
6
 F

F
F
F
h

P
ri
n
t
u
in

t8
 0

0
h

P
ri
n
t
u
in

t8
 F

F
h

0

500

1000

1500

2000
P

ro
g
ra

m
 s

iz
e
 i
n
 b

it
s

RISC

OISC

Figure 6.3.4: Bar graph showing effective
size in bits each benchmark function is tak-
ing in program memeory.

Figure 6.3.4 represents an effective pro-
gram size for each test function. On av-
erage, OISC instructions take 41.71% more
space which is to be expected.

6.4 Maximum clock frequency
In order to find maximum clock frequency,
processors were loaded with basic print
string function and 16bit multiplication.
Then, frequency was constantly increased
until resulting output though UART was
not correct.

In order to change clock frequency, three
parameters were changed and HDL code
resynthesised:

• PLL frequency multiplier and di-
vider: PLL takes 50MHz clock and
converts it to master clock fmclk. Mul-
tiplier and divider values are used to
adjust fmclk.

• UART frequency divider: Division
value was calculated as D =

⌊
fmclk

4fbaud

⌋
.

UART rate was set to 9600 baud.
UART module itself has four times
oversample.

Frequency was changed in 5MHz incre-
ments.

Theoretical maximum frequency was
found using Quartus Timing Analysis tool.
Slow 1200mV 85◦C model was used.

Theoretical Actual
RISC 114.08MHz 75-70MHz
OISC 64.68MHz 45-40MHz

Table 6.4.1: Theoretical and actual max-
imum frequencies of both processors.

Theoretical and actual results show unex-
pected results shown in Table 6.4.1, RISC
operated at about 40% higher maximum
frequency than OISC.

As explained in Subsection 5.2.3, OISC
logic blocks has about twice less time for
data propagation. Keeping that in mind,
and assuming that latch propagation and
register setup periods are insignificant to
critical path of OISC logic block, maximum
OISC frequency could be double as high as,
reaching 80-90MHz. This also assumes that
there is no other part of processor would
have limit. Further timing analysis needs
to be carried out to confirm this.

6.5 Future work
RISC has more sophisticated logic for var-
ious processor components. It is expected
to see RISC having better results due
to its higher optimisation. OISC should
be implemented with multiple data & in-
struction buses. This could be performed
with minimal corrections on hardware, how-
ever would require many changes in assem-
bly programs. Instruction composition re-
sults show that OISC takes more instruc-
tions to store values in accumulators, which
could benefit from multi-bus parallelisation.
Adding a single additional bus should re-
duce benchmarks time by up to double,
which would produce more comparable to
RISC. In addition, multi-bus OISC can per-
form truly parallel programs assuming it
has enough processor resources to perform
operations (for example operate different
ALU operations at the same time). This

25

potentially would be dominant feature over
RISC in time-sensitive programs, GPIO
(General Purpose Input/Output) and inter-
rupt handling.

Additional buses would not greatly in-
crease processor logic element size, espe-
cially when using interconnect optimisation
techniques [22, 23]. Matching processor
complexity should also allow more fair and
direct comparison specifically between two
architectures.

A number of other improvements and fu-
ture research are proposed:

1. Perform more tests on power analysis
with different frequencies. Find the
activity factor described in Subsection
6.2.1.

2. Further investigate maximum fre-
quency. Try to resolve OISC timing
issue and repeat maximum frequency
test. This would allow confirming or
denying theorised higher frequency ca-
pabilities for OISC.

3. Design a higher level language compiler
such as BASIC or C. This would al-
low performing more complicated pro-
grams which would more closely relate
to microcontroller operations. How-
ever, OISC compiler would need extra
optimisation layer to efficiently organ-
ise instructions.

4. Compare proposed processor designs
with other commercially available 8-bit
processors such as Atmel AVR micro-
controllers, Motorola 6800 family and
Microchip PIC.

7 Conclusion
In this paper, two novel RISC and OISC-
MOVE architectures are designed and im-
plemented on a FPGA. Logic element re-
quirements, power consumption, maximum
frequency where tested. Benchmark pro-
grams execution times were used to com-
pare these two processors and investigate

OISC-MOVE advantages. It is shown that
power consumption differences are insignif-
icant, RISC managed to reach 40% higher
maximum frequency at 75-70MHz, however
due to a timing design issue with OISC.
OISC required 51.7% less logic elements to
implement on FPGA. Benchmarks showed
that OISC took 71% longer to execute on
average while requiring 41.71% more in-
struction space.

This project has sucessfully covered its
goals in studying architectures and investi-
gating an alternative OISC implementation.
Results show that proposed implementation
of OISC-MOVE may be only suitable for
microprocessor application with very strict
logic element limit.

RISC processor has shown to be supe-
rior in tests, however it has more opti-
mised implementation. Further research in
needed to investigate OISC-MOVE perfor-
mance with multiple data and instruction
buses to match RISC complexity.

References
[1] T. Jamil. “RISC versus CISC”. In: vol. 14. 3.

1995, pp. 13–16. doi: 10.1109/45.464688.
[2] E. Blem, J. Menon, and K. Sankaralingam.

“Power struggles: Revisiting the RISC vs.
CISC debate on contemporary ARM and x86
architectures”. In: 2013. doi: 10.1109/hpca.
2013.6522302.

[3] Minato Yokota, Kaoru Saso, and Yuko Hara-
Azumi. “One-instruction set computer-based
multicore processors for energy-efficient
streaming data processing”. In: 2017. doi:
10.1145/3130265.3130318.

[4] Tanvir Ahmed et al. “Synthesizable-from-C
Embedded Processor Based on MIPS-ISA
and OISC”. In: 2015. doi: 10.1109/euc.
2015.23.

[5] William F Gilreath and Phillip A Laplante.
Computer Architecture: A Minimalist Per-
spective. Kluwer Academic Publishers, 2003.

26

https://doi.org/10.1109/45.464688
https://doi.org/10.1109/hpca.2013.6522302
https://doi.org/10.1109/hpca.2013.6522302
https://doi.org/10.1145/3130265.3130318
https://doi.org/10.1109/euc.2015.23
https://doi.org/10.1109/euc.2015.23

[6] H. Corporaal and H. Mulder. “MOVE: a
framework for high-performance processor
design”. In: Supercomputing ’91:Proceedings
of the 1991 ACM/IEEE Conference on Su-
percomputing. 1991, pp. 692–701. doi: 10 .
1145/125826.126159.

[7] Henk Corporaal. MOVE32INT: Architecture
and Programmer’s Reference Manual. Tech.
rep. 1994.

[8] H. Corporaal. “Design of transport triggered
architectures”. In: Proceedings of 4th Great
Lakes Symposium on VLSI. 1994, pp. 130–
135. doi: 10.1109/GLSV.1994.289981.

[9] J. Hu et al. “A Novel Architecture for Fast
RSA Key Generation Based on RNS”. In:
2011 Fourth International Symposium on
Parallel Architectures, Algorithms and Pro-
gramming. 2011, pp. 345–349. doi: 10.1109/
PAAP.2011.75.

[10] A. Burian, P. Salmela, and J. Takala. “Com-
plex fixed-point matrix inversion using trans-
port triggered architecture”. In: 2005 IEEE
International Conference on Application-
Specific Systems, Architecture Processors
(ASAP’05). 2005, pp. 107–112. doi: 10 .
1109/ASAP.2005.25.

[11] J. ádník and J. Takala. “Low-power Pro-
grammable Processor for Fast Fourier Trans-
form Based on Transport Triggered Archi-
tecture”. In: ICASSP 2019 - 2019 IEEE In-
ternational Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2019,
pp. 1423–1427. doi: 10.1109/ICASSP.2019.
8682289.

[12] P. Hamalainen et al. “Implementation of en-
cryption algorithms on transport triggered
architectures”. In: ISCAS 2001. The 2001
IEEE International Symposium on Circuits
and Systems (Cat. No.01CH37196). Vol. 4.
2001, 726–729 vol. 4. doi: 10.1109/ISCAS.
2001.922340.

[13] P. Salmela et al. “Scalable FIR filtering on
transport triggered architecture processor”.
In: International Symposium on Signals, Cir-
cuits and Systems, 2005. ISSCS 2005. Vol. 2.
2005, 493–496 Vol. 2. doi: 10.1109/ISSCS.
2005.1511285.

[14] B. Rister et al. “Parallel programming of
a symmetric transport-triggered architecture
with applications in flexible LDPC encod-
ing”. In: 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 2014, pp. 8380–8384. doi:
10.1109/ICASSP.2014.6855236.

[15] J. Multanen et al. “Power optimizations for
transport triggered SIMD processors”. In:
2015 International Conference on Embedded
Computer Systems: Architectures, Modeling,
and Simulation (SAMOS). 2015, pp. 303–
309. doi: 10.1109/SAMOS.2015.7363689.

[16] M. Safarpour, I. Hautala, and O. Silvén.
“An Embedded Programmable Processor for
Compressive Sensing Applications”. In: 2018
IEEE Nordic Circuits and Systems Confer-
ence (NORCAS): NORCHIP and Interna-
tional Symposium of System-on-Chip (SoC).
2018, pp. 1–5. doi: 10.1109/NORCHIP.2018.
8573494.

[17] J. Heikkinen et al. “Evaluating template-
based instruction compression on transport
triggered architectures”. In: The 3rd IEEE
International Workshop on System-on-Chip
for Real-Time Applications, 2003. Proceed-
ings. 2003, pp. 192–195. doi: 10 . 1109 /
IWSOC.2003.1213033.

[18] J. Helkala et al. “Variable length instruc-
tion compression on Transport Triggered Ar-
chitectures”. In: 2014 International Confer-
ence on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS
XIV). 2014, pp. 149–155. doi: 10 . 1109 /
SAMOS.2014.6893206.

[19] J. Wei et al. “Program Compression Based
on Arithmetic Coding on Transport Trig-
gered Architecture”. In: 2008 International
Conference on Embedded Software and Sys-
tems Symposia. 2008, pp. 126–131. doi: 10.
1109/ICESS.Symposia.2008.9.

[20] Su Wang et al. “An instruction redundancy
removal method on a transport triggered ar-
chitecture processor”. In: Proceedings of the
2009 12th International Symposium on Inte-
grated Circuits. 2009, pp. 602–604.

[21] L. Jiang, Y. Zhu, and Y. Wei. “Software
Pipelining with Minimal Loop Overhead on
Transport Triggered Architecture”. In: 2008
International Conference on Embedded Soft-
ware and Systems. 2008, pp. 451–458. doi:
10.1109/ICESS.2008.18.

[22] T. Pionteck et al. “Hardware evaluation of
low power communication mechanisms for
transport-triggered architectures”. In: 14th
IEEE International Workshop on Rapid Sys-
tems Prototyping, 2003. Proceedings. 2003,
pp. 141–147. doi: 10. 1109 / IWRSP . 2003 .
1207041.

27

https://doi.org/10.1145/125826.126159
https://doi.org/10.1145/125826.126159
https://doi.org/10.1109/GLSV.1994.289981
https://doi.org/10.1109/PAAP.2011.75
https://doi.org/10.1109/PAAP.2011.75
https://doi.org/10.1109/ASAP.2005.25
https://doi.org/10.1109/ASAP.2005.25
https://doi.org/10.1109/ICASSP.2019.8682289
https://doi.org/10.1109/ICASSP.2019.8682289
https://doi.org/10.1109/ISCAS.2001.922340
https://doi.org/10.1109/ISCAS.2001.922340
https://doi.org/10.1109/ISSCS.2005.1511285
https://doi.org/10.1109/ISSCS.2005.1511285
https://doi.org/10.1109/ICASSP.2014.6855236
https://doi.org/10.1109/SAMOS.2015.7363689
https://doi.org/10.1109/NORCHIP.2018.8573494
https://doi.org/10.1109/NORCHIP.2018.8573494
https://doi.org/10.1109/IWSOC.2003.1213033
https://doi.org/10.1109/IWSOC.2003.1213033
https://doi.org/10.1109/SAMOS.2014.6893206
https://doi.org/10.1109/SAMOS.2014.6893206
https://doi.org/10.1109/ICESS.Symposia.2008.9
https://doi.org/10.1109/ICESS.Symposia.2008.9
https://doi.org/10.1109/ICESS.2008.18
https://doi.org/10.1109/IWRSP.2003.1207041
https://doi.org/10.1109/IWRSP.2003.1207041

[23] T. Viitanen et al. “Heuristics for greedy
transport triggered architecture interconnect
exploration”. In: 2014 International Confer-
ence on Compilers, Architecture and Synthe-
sis for Embedded Systems (CASES). 2014,
pp. 1–7. doi: 10.1145/2656106.2656123.

[24] S. Hauser, N. Moser, and B. Juurlink.
“SynZEN: A hybrid TTA/VLIW architec-
ture with a distributed register file”. In:
NORCHIP 2012. 2012, pp. 1–4. doi: 10 .
1109/NORCHP.2012.6403142.

[25] David Money Harris and Sarah L Harris.
Digital design and computer architecture.
2nd ed. Elsevier, 2013.

[26] François Morain. “Atkin’s Test: News from
the Front”. In: 1989, pp. 626–635. doi: 10.
1007/3-540-46885-4_59.

28

https://doi.org/10.1145/2656106.2656123
https://doi.org/10.1109/NORCHP.2012.6403142
https://doi.org/10.1109/NORCHP.2012.6403142
https://doi.org/10.1007/3-540-46885-4_59
https://doi.org/10.1007/3-540-46885-4_59

8 Appendix

8.1 Processor instruction set tables

Table 8.1.1: Instruction set for RISC processor. * Required immediate size in bytes

Instr. Description I-size *
2 register instructions

MOVE Copy value from one register to other 0
ADD Arithmetical addition 0
SUB Arithmetical subtraction 0
AND Logical AND 0
OR Logical OR 0
XOR Logical XOR 0
MUL Arithmetical multiplication 0
DIV Arithmetical division (inc. modulo) 0

1 register instructions
COPY0 Copy intimidate to a register 0 1
COPY1 Copy intimidate to a register 1 1
COPY2 Copy intimidate to a register 2 1
COPY3 Copy intimidate to a register 3 1
ADDC Arithmetical addition with carry bit 0
ADDI Arithmetical addition with immediate 1
SUBC Arithmetical subtraction with carry bit 0
SUBI Arithmetical subtraction with immediate 1
ANDI Logical AND with immediate 1
ORI Logical OR with immediate 1
XORI Logical XOR with immediate 1
CI0 Replace intimidate value byte 0 for next instruction 1
CI1 Replace intimidate value byte 1 for next instruction 1
CI2 Replace intimidate value byte 2 for next instruction 1
SLL Shift left logical 1
SRL Shift right logical 1
SRA Shift right arithmetical 1
LWHI Load word (high byte) 3
SWHI Store word (high byte, reg. only) 0
LWLO Load word (low byte) 3
SWLO Store word (low byte, stores high byte reg.) 3
INC Increase by 1 0
DEC Decrease by 1 0
GETAH Get ALU high byte reg. (only for MUL & DIV & ROL &

ROR)
0

GETIF Get interrupt flags 0
PUSH Push to stack 0
POP Pop from stack 0
COM Send/Receive to/from com. block 1
BEQ Branch on equal 3
BGT Branch on greater than 3

29

Table 8.1.1: Instruction set for RISC processor. * Required immediate size in bytes

Instr. Description I-size *
BGE Branch on greater equal than 3
BZ Branch on zero 2

0 register instructions
CALL Call function, put return to stack 2
RET Return from function 0
JUMP Jump to address 2
RETI Return from interrupt 0
INTRE Set interrupt entry pointer 2

Table 8.1.2: Instructions for OISC processor.

Name Description
Destination Addresses

ACC0 Set ALU source A accumulator
ACC1 Set ALU source B accumulator
BR0 Set Branch pointer register (low byte)
BR1 Set Branch pointer register (high byte)
BRZ If source value is 0, set program counter to branch pointer
STACK Push value to stack
MEM0 Set Memory pointer register (low byte)
MEM1 Set Memory pointer register (middle byte)
MEM2 Set Memory pointer register (high byte)
MEMHI Save high byte to memory at memory pointer
MEMLO Save low byte to memory at memory pointer
COMA Set communication block address register
COMD Send value to communication block
REG0 Set general purpose register 0
REG1 set general purpose register 1

Source Addresses
NULL Get constant 0
ALU0 Get value at ALU source A accumulator
ALU1 Get value at ALU source B accumulator
ADD Get Arithmetical addition of ALU sources
ADDC Get Arithmetical addition carry
ADC Get Arithmetical addition of ALU sources and carry
SUB Get Arithmetical subtraction of ALU sources
SUBC Get Arithmetical subtraction carry
SBC Get Arithmetical subtraction of ALU sources and carry
AND Get Logical AND of ALU sources
OR Get Logical OR of ALU sources
XOR Get Logical XOR of ALU sources
SLL Get ALU source A shifted left by source B
SRL Get ALU source A shifted right by source B
ROL Get rolled off value from previous SLL instance
ROR Get rolled off value from previous SRL instance

30

Table 8.1.2: Instructions for OISC processor.

Name Description
MULLO Get Arithmetical multiplication of ALU sources (low byte)
MULHI Get Arithmetical multiplication of ALU sources (high byte)
DIV Get Arithmetical division of ALU sources
MOD Get Arithmetical modulo of ALU sources
EQ Check if ALU source A is equal to source B
GT Check if ALU source A is greater than source B
GE Check if ALU source A is greater or equal to source B
NE Check if ALU source A is not equal to source B
LT Check if ALU source A is less than source B
LE Check if ALU source A is less or equal to to source B
BR0 Get Branch pointer register value (low byte)
BR1 Get Branch pointer register value (high byte)
PC0 Get Program counter value (low byte)
PC1 Get Program counter value (high byte)
MEM0 Get Memory pointer register value (low byte)
MEM1 Get Memory pointer register value (middle byte)
MEM2 Get Memory pointer register value (high byte)
MEMHI Load high byte from memory at memory pointer
MEMLO Load low byte from memory at memory pointer
STACK Pop value from stack
ST0 Get stack address value (low byte)
ST1 Get stack address value (high byte)
COMA Get communication block address register value
COMD Read value from communication block
REG0 Get value from general purpose register 0
REG1 Get value from general purpose register 1

31

	Abstract
	Introduction
	Aims and Objectives
	Related Work
	Project contents

	Goals and Objectives
	RISC Processor
	OISC Processor
	Design Criteria
	Benchmark

	Theory and Analytical Bases
	RISC Processor
	Pipelining
	Multiple cores

	OISC Processor
	OISC Pipelining

	Predictions
	Execution time
	Instruction Space
	Resources

	Technical Method
	Machine Code
	RISC Machine Code
	OISC Machine Code

	Data flow
	RISC Datapath
	OISC Datapath
	OISC Datapath Implementation Problems

	Stack
	RISC Stack
	OISC Stack

	Program Counters
	RISC Program Counter
	OISC Program Counter

	Arithmetic Logic Unit
	OISC ALU
	RISC ALU

	Program Memory
	RISC Program Memory
	OISC Program Memory

	Instruction decoding
	RISC IMO
	OISC Instruction decoding

	Assembly
	System setup

	Results and Analysis
	FPGA logic component composition
	Power analysis
	Activity Factor

	Benchmark Programs
	Instruction composition
	Performance
	Program space

	Maximum clock frequency
	Future work

	Conclusion
	Appendix
	Processor instruction set tables

