
University College London
Department of Electronic and Electrical Engineering

Performance characterisation of
8-bit RISC and OISC architectures

Author:
Mindaugas

Jarmolovičius
zceemja@ucl.ac.uk

SN: 17139494

Supervisor:
Prof. Robert

Killey
r.killey@ucl.ac.uk

Second Assessor:
Dr. Ed

Romans
e.romans@ucl.ac.uk

A BEng Project Final Report

April 20, 2020

mailto:zceemja@ucl.ac.uk
mailto:r.killey@ucl.ac.uk
mailto:e.romans@ucl.ac.uk

Contents
1 Abstract 2

2 Introduction 2
2.1 Aims and Objectives 2
2.2 Related Work 2
2.3 Project contents 3

3 Goals and Objectives 4
3.1 RISC Processor 4
3.2 OISC Processor 4
3.3 Design Criteria 4
3.4 Benchmark 4

4 Theory and Analytical Bases 4
4.1 RISC Processor 4

4.1.1 Pipelining 5
4.1.2 Multiple cores 6

4.2 OISC Processor 6
4.2.1 OISC Pipelining . . . 6

4.3 Predictions 7
4.3.1 Execution time . . . 7
4.3.2 Instruction Space . . 7
4.3.3 Resources 7

5 Technical Method 8
5.1 Machine Code 8

5.1.1 RISC Machine Code 8
5.1.2 OISC Machine Code 8

5.2 Data flow 9
5.2.1 RISC Datapath . . . 9
5.2.2 OISC Datapath . . . 10
5.2.3 OISC Datapath Im-

plementation Problems 10
5.3 Stack 10

5.3.1 RISC Stack 11
5.3.2 OISC Stack 11

5.4 Program Counters 11
5.4.1 RISC Program Counter 11
5.4.2 OISC Program Counter 12

5.5 Arithmetic Logic Unit . . . 13
5.5.1 OISC ALU 13
5.5.2 RISC ALU 14

5.6 Program Memory 14
5.6.1 RISC Program Memory 14
5.6.2 OISC Program Memory 15

5.7 Instruction decoding 15
5.7.1 RISC IMO 15

5.7.2 OISC Instruction de-
coding 16

5.8 Assembly 16
5.9 System setup 18

6 Results and Analysis 19
6.1 FPGA logic component com-

position 19
6.2 Power analysis 20

6.2.1 Activity Factor . . . 21
6.3 Benchmark Programs 21

6.3.1 Instruction composition 21
6.3.2 Performance 23
6.3.3 Program space . . . 24

6.4 Maximum clock frequency . 25
6.5 Future work 25

7 Conclusion 26

8 Appendix 29
8.1 Processor instruction set tables 29

1

1 Abstract
One Instruction Set Computer (OISC),
commonly implemented as Transport Trig-
gered Architectures (TTAs) is a promis-
ing architecture that is successfully used
in Application-Specific Instruction Set Pro-
cessors (ASIPs) exploiting operation style
parallelism, while keeping simplicity and
flexibility. There is a lack of research in
general purpose OISC with single data-
instruction bus that could be used in lower
power and performance comparable to a
8bit microcontroller using traditional Re-
duce Instruction Set Computer (RISC) ar-
chitecture. The paper designs two novel
8bit RISC and OISC processors, and in-
vestigates their characteristics and perfor-
mance when implemented on FPGA. OISC
required only a half of logic elements com-
paring to RISC, however it takes 71% longer
to execute designed benchmark, showing
that OISC would need more than one data-
instruction bus to outperform RISC.

2 Introduction
Since the 70s there has been a rise of many
processor architectures that try to fulfil
specific performance and power application
constraints. One of more noticeable cases
are ARM RISC architecture being used in
mobile devices instead of the more popu-
lar and robust x86 CISC (Complex Instruc-
tion Set Computer) architecture in favour
of simplicity, cost and lower power con-
sumption [1, 2]. It has been shown that in
low power applications, such as IoTs (Inter-
net of Things), OISC implementation can
be superior in power and data through-
put comparing to traditional RISC archi-
tectures [3, 4]. This project proposes to
compare two novel RISC and OISC 8bit ar-
chitectures and compare their performance,
design complexity and efficiency.

2.1 Aims and Objectives
The project has three main objectives:

1. Design and build a RISC based proces-
sor.

2. Design and build an OISC based pro-
cessor.

3. Design and perform a fair benchmark
on both processors.

2.2 Related Work
This section goes through supporting the-
ory of RISC and OISC architectures, and
their comparison.

The principal functions of general OISC
architecture should have advantage in per-
formance and power consumption while
having lower transistor count. There are
several theoretical models to implement a
processor using only a one instruction, most
important models are subtract and branch,
MOVE and half-adder architectures [5].

Some researches have proven benefits of
the subtract and branch architecture over
the RISC:
• Using an OISC SUBLEQ (SUBtract and
jump if Less or EQuial to zero) as a copro-
cessor for the MIPS-ISA processor to em-
ulate the functionality of different classes
shows desirable area/performance/power
trade-offs [4].
• Comparing an OISC SUBLEQ multicore
to a RISC achieves better performance and
lower energy for streaming data processing
[3].

Looking at the OISC MOVE type, it has
been researched since early 90s. It has been
shown that the OISC MOVE can benefit of
a VLIW (very large instruction word) ar-
rangement, classifying it as a SIMO (single
instruction, multiple operation) or a SIMT
(single instruction, multiple transports) ar-
chitectures. The problem with all of these
arrangements is that they exhibit poor or
complex hardware utilization. OISC MOVE
has been proposed as a design framework

2

enabling a lower complexity, better hard-
ware utilization, and a scalable performance
[6]. In this framework a TTA is proposed
which describes how a single instruction
should transport the data. To support
theoretical benefits, a MOVE32INT TTA has
been designed [7] and proven to be superior
architecture to the RISC. Using a 1.6µm
fabrication technology, RISC has achieved
20MHz clock with 20Mops/second, while
MOVE32INT implemented using SoGs (Sea of
Gates) achieved 80MHz with 320Mops/sec-
ond [8].

The TTA framework as further used
in other researches to implement ASIPs
to solve various problems. Some rele-
vant examples are RSA calculation [9]; ma-
trix inversion [10]; Fast Fourier Transform
(FFT) [11]; IWEP, RC4 and 3DES encryp-
tion [12]; Parallel Finite Impulse Response
(FIR) filter [13]; Low-Density Parity-Check
(LDPC) encoding [14]; Software Defined
Radio (SDR) [15]. One of the most re-
cent researches use TTA architecture to
solve Compressive Sensing algorithms. Re-
search showed 9 times of energy efficiency to
that of FPGA implemented NIOS II pro-
cessor, and theoretical 20 time energy ef-
ficiency that of ARM Cortex-A15 [16]. In
this particular research however, used ARM
Cortex-A15 with 28nm Metal Gate CMOS
technology, compares to TTA implemented
on Altera Cyclone IV FPGA with 60nm Sil-
icon Gate CMOS technology. Both pro-
cessor implementations cannot be directly
compared.

Most of these researches show that TTA
has a greater power efficiency, a higher clock
frequency and a lower logic resource count.

These benefits come with an expense,
VLIW has bigger instruction word, there-
fore a bigger program size. TTA espe-
cially suffers from this due to the redun-
dant instructions. Some proposed solutions
are variable length instructions and instruc-
tion templates, which reduced program size
between 30% and 44% [17, 18]; a com-
pression based on arithmetic coding [19];

and a method to remove redundant instruc-
tions [20]. Software is another difficulty as
the compiler need to take additional steps
for the data transportation optimisations.
TTA software can be easily exploited how-
ever, to embed a software pipelining and
parallelism without need of the extra hard-
ware [21].

With the proposed MOVE framework,
hardware utilisation shown to be improved
by reducing transition activity [22], reduc-
ing interconnects shown saving 13% of en-
ergy [23] on an small scale. A novel archi-
tecture named SynZEN also showed a fur-
ther improvements by using an adaptable
processing unit and a simple control logic
[24].

2.3 Project contents
Section 3 will go more in details behind the
motivation and project decisions based on
Related Work. Section 4 explains theory
and result predictions. Section 5 explains
both processor design choices and how each
processor part is implemented on OISC and
RISC processor. It also includes assem-
bler design and system setup. In section 6,
results will be discussed, including bench-
mark methods and future work. Summary
and conclusion of design and results can be
found in section 7. Appendix in section 8 in-
cludes any other information, such as both
processor instruction set.

3 Goals and Objectives
This project can be classified as a Design
and Construction type, which explores al-
ternative designs of a processor architecture
and microarchitecture. Main goals are:

1. Study and explore computer architec-
tures, SystemVerilog and the assembly
language.

2. Compare how well an OISC MOVE ar-
chitecture would perform in a low

3

performance microcontroller applica-
tion comparing to equivalent and most
commonly used RISC architecture.

3. View an alternative method of using
OISC MOVE in a SISO (single instruc-
tion, single operation) structure, com-
paring to more commonly implemented
TTAs VLIW architectures that are ei-
ther a SIMO or a SIMT structure.

3.1 RISC Processor
The RISC architecture will be mainly based
on MIPS architecture explained in [25], ex-
cept it this RISC processor would have 8bit
data bus, four general purpose registers and
would have multiple optimisations related
to 8bit limits. Some of minimalistic design
ideas was also from [5].

3.2 OISC Processor
OISC MOVE has many benefits from VLIW
and SIMO or SIMT design, however there is
a lack of research investigating and compar-
ing more general purpose OISC MOVE 8bit
processor with a short instruction word and
a SISO configuration. The main theory for
building OISC architecture will be based on
[5].

3.3 Design Criteria
In order to fairly comparison between both
architectures, a common design criteria is
set:
• Minimal instruction size

• Minimalistic design

• 8bit data bus width

• 16bit ROM address width

• 24bit RAM address width

• 16bit RAM word size
When constructing these points, time and
equipment resources were taken into the
consideration.

3.4 Benchmark
This benchmark includes different algo-
rithms that are commonly used in 8bit mi-
crocontrollers, IoT devices or similar low
power microprocessor applications.

4 Theory and Analytical
Bases

In this section differences in RISC and
OISC are explained. It includes predictions
and theory behind it.

4.1 RISC Processor
In this project, proposed RISC is mainly
based on MIPS microarchitecture [25]. Fig-
ure 4.1.1 represents a simplified diagram of
a proposed RISC processor. In this archi-
tecture, program data travels from a pro-
gram memory to the control block where
instruction is decoded. Then, control block
further decides how data is directed in the
datapath block. Such structure requires a
complicated control block and additional
data routing blocks. Depending on in-
struction, control block sets ALU, register
file, memory operations and how data flows
from one to other. Therefore, if none of the
blocks are bypassed, data can flow though
every single of these blocks, creating a long
chain of combinational logic and increas-
ing the critical path. However, this en-
ables great flexibility allowing multiple op-
erations to happen during a single step, for
example load value from register to mem-
ory, while address value is immediate offset
by another register value using the ALU. In
order to increase performance of such pro-
cessor, pipelining or multiple cores may be
used.

4.1.1 Pipelining

Tc =tpcq + tROM + tregister+

trouting + tALU + tRAM + tsetup
(1)

4

Figure 4.1.1: Abstract diagram of proposed RISC structure

Equation 1 shows the maximum proces-
sor cycle period Tc which depends on com-
binational logic delay of every logic block,
flip-flop time of propagation from clock to
output of synchronous sequential circuit tpcq
and flip-flop setup time tsetup.

Tcp = max


tpcq + tROM + tsetup,
tpcq + tregister + tsetup,
tpcq + tALU + tsetup,
tpcq + tRAM + tsetup

 (2)

Pipelinig separates each processor’s dat-
apath block with a flip-flop. This changes
critical path therefore reducing cycle pe-
riod. A pipelined processor cycle period Tcp

is represented in the equation 2. Such mod-
ification could theoretically increase clock
frequency by 2 or 3 times.

Pipelining, however, introduces other de-
sign complications. Instructions that de-
pend on each other, for example an oper-
ation R = A+B +C needs to be executed
in two steps, t = A+B and R = t+C. Sec-
ond step depends upon previous step result.
Therefore, additional logic is required to de-
tect such dependencies and bypass datap-
ath stages, or stall pipelining. Furthermore,
breaching would also require stalling; tem-
porary saving datapath stage and restoring
it if needed when branching is concluded;

or further branch prediction logic. Such
dependency and branching issue requires a
timing hazards prevention logic which in-
creases processor complexity and required
resources.

4.1.2 Multiple cores

A multicore system is a solution to increase
processor throughput by having multiple
datapaths and control logic instances, each
running separate instructions. Cores share
other system resources such as RAM.

A multicore processor requires software
adjustments as each processor’s core would
execute separate programs. Therefore,
some synchronisation between them is
needed. A single additional core would
also double the control and datapath blocks,
substantially increasing resource require-
ments too. In addition, programs most of-
ten cannot be perfectly divided to parallel
tasks due to some result dependencies be-
tween each subtask. Therefore, doubling
processor core count would not likely result
double the performance.

4.2 OISC Processor
Figure 4.2.1 represents simplified structure
of an OISC MOVE architecture. In the
simplest case, processor has a pair of buses

5

Figure 4.2.1: Abstract diagram of proposed OISC structure

data and instruction. An instruction bus
has a source and destination address that
connects two parts of processor via a data
bus. This mechanism allows for the data
to flow around processor. Computation
is accomplished by setting accumulators at
destination addresses and taking computed
values from the source address. Other ac-
tions can be performed by destination node,
for instance check value for branching or
sending data to memory.

4.2.1 OISC Pipelining

The maximum cycle period of such proces-
sor microarchitecture can be found in Equa-
tion 3.

tCL = max

tregister,
tALU ,
tRAM



Tcp = max

(
ten + tbuf ,

tpcq1

)
+

+ tpcq2 + tCL + tsetup

(3)

Where ten is period to check if instruc-
tion bus address match, tbuf is period for
source buffer to output value into the data
bus, tpcq2 is propagation period for program

memory, tCL represents the longest propa-
gation period though a logic block, tsetup is
the setup time inside logic block. tpcq1 and
tpcq2 are clock to output delay for the se-
quential logic connecting source buffer and
memory connecting instruction bus, respec-
tively.

4.3 Predictions
Comparing RISC and OISC, the maximum
processor cycle period of OISC is almost
equivalent to the pipelined RISC, with ad-
dition of enable, buffer and additional ROM
delays: max (ten + tbuf , tpcq1).

Further more, due to the nature of pro-
cessor no additional timing hazard preven-
tion logic is needed, making this much sim-
pler design. OISC tCL pipelining can be also
introduced to components that has high
propagation delay. For instance, multipli-
cation in an ALU could be pipelined into
two stages. When setting ALU accumula-
tors, software could be designed to retrieve
multiplied result only after two cycles. This
can further reduced required resources.

4.3.1 Execution time

OISC requires taking extra steps to perform
basic functions. ALU, branch or memory

6

operations needs accumulator values to be
set first to compute an output. A single
data-instruction bus OISC therefore is ex-
pected to be slower executing the same task
as RISC.

4.3.2 Instruction Space

RISC has compact instructions, as a single
instruction can carry a small opcode, reg-
ister addresses and optionality a multiple
word immediate value. OISC has a bigger
instruction overhead as it can only carry a
source and destination address, meaning it
can operate on only one register or immedi-
ate value in a single instruction. Therefore,
it is expected the OISC will require more
instruction space to perform the same func-
tion as RISC.

4.3.3 Resources

OISC does not have a control block which
contains how data travel in datapath. It
also does not have multi-address register file
and further routing logic within a datapath.
This indicates that the OISC should require
less logic elements to implement. This also
should result in lower power consumption.

5 Technical Method
This section describes methods and design
choices used to construct two processors.

5.1 Machine Code
5.1.1 RISC Machine Code

As the aim of instruction size to be as min-
imal as possible, RISC instruction decided
to be 8bits with optional additional imme-
diate value from 1 to 3 bytes. Immediate
values are explained in section 5.7.

Decision was made to have instruction
compose of operation code two operands
- source/destination and source, which is
similar to x86 architecture rather than
MIPS. Three possible combinations of reg-
ister address sizes are possible in such case
from one to three bits. Two was selected as
it allow having four general purpose regis-
ters which is sufficient for most applications,
and allow four bits for operation code - al-
lowing up to 16 instructions.

Due to small amount of possible opera-
tion codes and not all instructions requiring
two operands (for example JUMP instruction
may not need any operands or could use
one operand to have address offset), other
two type instructions are added to the de-
sign - with one and zero operands. See fig-
ure 5.1.1. This enabled processor to have
45 different instructions while maintaining
minimal instruction size. Final design has:

• 8 2-operand instructions

• 32 1-operand instructions

• 5 0-operand instructions

Full list of RISC instructions are listed in
table 8.1.1 in Appendix section.

7

2 operands: 0 1 2 3︸ ︷︷ ︸
op. code

4 5︸ ︷︷ ︸
dst.

6 7︸ ︷︷ ︸
src.

1 operand: 0 1 2 3︸ ︷︷ ︸
op. code

4 5︸ ︷︷ ︸
dst.

6 7︸ ︷︷ ︸
op. c.

0 operands: 0 1 2 3 4 5 6 7︸ ︷︷ ︸
operation code

Figure 5.1.1: RISC instructions compo-
sition. Number inside box represents bit in-
dex. Destination (dst.) bits represents of
source and destination register address.

5.1.2 OISC Machine Code

As OISC requires only a single instruction,
composition of instruction mainly requires
two parts - source and destination. To al-
low higher instruction flexibility a immedi-
ate bit has been added to replace source
address by immediate value. Composition
of finalised machine code is shown in figure
5.1.2.

0︸︷︷︸
imm.

1 2 3 4︸ ︷︷ ︸
destination

5 6 7 8 9 10 11 12︸ ︷︷ ︸
source

Figure 5.1.2: OISC instruction composi-
tion. Number inside box represents bit in-
dex.

Decision was made to have source ad-
dress to be eight bits to allow it be re-
placed with immediate value. Destination
address was chosen to be as minimal as pos-
sible, leaving only four bits or 16 possible
destinations. Final design has 15 destina-
tion and 41 source addresses. This is not
the most space efficient design as 41 source
addresses would require only six bits for
address, wasting two bits every time non-
immediate source is used.

Full list of OISC sources and destinations
are listed in table 8.1.2 in Appendix section.

8

5.2 Data flow
5.2.1 RISC Datapath

Figure 5.2.1: Digital diagram of RISC datapath

Figure 5.2.1 above represents partial RISC datapath. This diagram can be extends to Program counter, Stack pointer and Immediate
Override logics are represented in figures 5.4.1, 5.3.1 and 5.7.1 respectively. CDI (Control-Data Interface) is HDL concept that connects
datapath and control unit. Immediate value to datapath is provided by IMO block described in section 5.7.1.
Data to register file is selected and saved with MUX0. This data is delayed 1 cycle with R2 to match timing that of data is taken from
memory. If LWLO or LWHI is executed, MUX1 select high or low byte from memory to read. To compensate for timing as value written
to register file is delayed by 1 cycle, register file has internal logic that outputs wr_data to rd_data1 or/and rd_data2 immediately if
wr_en is high and rd_addr1 or/and rd_addr2 matches wr_addr.

9

MUX2 allows override ALU source B, R3
and MUX3 enables control unit to enable
ALU carry in allowing multi-byte number
addition/subtraction. This function is not
fully implemented yet.MUX4 and MUX5
allows to send data to COM block with COM
instruction, if other instruction performed
then 0x00 byte for COM address and data
is sent, indicating no action. Data is stored
in memory only with SWLO instruction writ-
ing to high byte whatever is stored in R4
buffer. This buffer can be written to using
SWHI instruction. MUX6 selects memory
address value from imm or stack pointer.

5.2.2 OISC Datapath

OISC datapath only consists of instruction
and data buses, and small circuit that con-
nect them to logic blocks that process the
data. These logic blocks can represent ALU
operation combinational logic, or any other
part of a processor.

Figure 5.2.2 represents common destina-
tion circuit. It checks if particular block
destination matches one on instruction bus,
then enables latch and also sets flag to fur-
ther logic.

Figure 5.2.2: OISC processor data bus to
destination connection logic

Similarly Figure 5.2.3 represents source
circuit connecting output of logic block. As
logic block may only involve combinational
logic a register is placed at the output of it.
Buffer is used to connect data in register to
data bus. This ensures that only one bus
driver is present, ensuring do data collision.

Figure 5.2.3: OISC processor data bus to
source connection logic

The general timing is designed so that
the information at the source is immedi-
ately ready in data bus at rise of the pro-
cessor clock. The source is connected to
the destination connection where combina-
tional logic is present.

5.2.3 OISC Datapath Implementa-
tion Problems

The complete implementation using latches
for destination was not successful. Latches
did not operate correctly when synthesised
on FPGA. This issue might be caused by
some timing problem between some source
and destination logic combination. Exact
cause was not resolved.

As a quick solution, latches at destina-
tion has been replaced with a clocked reg-
ister that is triggered at opposite to source
register clock edge (negative). This resolved
this issue, however it effectively reduce pe-
riod that data can propagate though logic
blocks between source and destination by
two.

5.3 Stack
This section describes RISC and OISC ded-
icated logic for stack pointer control. Stack
pointer starts from the highest memory ad-
dress value and "stacks" to lower memory
address values. Both designs were simpli-
fied to only operate on two byte addresses,
meaning that stack pointer has a constant
0xFF value at least significant byte.

10

Figure 5.3.1: Digital diagram of RISC stack pointer logic

5.3.1 RISC Stack

RISC processor implements the stack
pointer that is used in PUSH, POP, CALL and
RET instructions. The stack pointer’s initial
address starts at the highest memory ad-
dress (0xFFFF) and subtracts 1 when data
is put to stack. Figure 5.3.1 represents the
logic diagram for stack pointer. Note that
the stack is only 16bit in size and the most
significant byte is set to 0xFF. The stack
pointer circuit also supports pc_halted sig-
nal from program counter to prevent the
stack pointer from being added by 1 twice
during RET instruction.

One of the problems with the current
stack pointer implementation is 8bit data
stored in 16bit memory address, wasting a
byte. This can be avoided by adding a high
byte register, however then it would cause
problems when a 16bit program pointer is
stored with CALL instruction. This can still
be improved with a more complex circuit, or
by using memory cache with 8bit data in-
put. However with current implementation
this does not affect processor comparison, it
only increases stack size in memory.

5.3.2 OISC Stack

Stack pointer in OISC is very similar to
RISC. In basic operation, when reset, push
or pop flags are set, it changes the state

of stack pointer by adding or subtracting
its value by one, or resetting it to default.
Logic diagram is shown in Figure 5.3.2

Logic diagram of stack control unique to
OISC processor is shown in Figure 5.3.3.
Push and pop flags are taken from source
and destination logic. A cached value of
last stored value is kept, so that it would
be immediately available on source request.
Pop flag is delayed by one cycle which en-
sures that once popped, lower stack value is
written to cache during next cycle.

5.4 Program Counters
In this subsection, program counter and
their differences will be described.

5.4.1 RISC Program Counter

Figure 5.4.1 represents the digital diagram
for program counter. There are a few key
features about this design: it can take val-
ues from memory for RET instruction; im-
mediate value (PC_IMM2 is shifted by 1
byte to allow BEQ, BGT, BGE instructions as
first immediate byte used as ALU source
B); can jump to interrupt address; produces
pc_halted signal when memory is read (RET
instruction takes 2 cycles, because cycle one
fetches the address from stack and second
cycle fetches the instruction from the in-
struction memory).

11

5.4.2 OISC Program Counter

OISC program counter is much simpler than
RISC, as it does not have variable length
instruction, delay flags instructions, or logic
for selecting branch source address.

Figure 5.4.2: Digital diagram of OISC
program counter

Looking at Figure 5.4.2 bottom, the ba-
sic operation is to just add one to previ-
ous program counter with ADDER1 and

REG1, reset it to zero at reset with MUX2.
Two destination logic blocks are used as ac-
cumulators to store branch address. Once
instruction with BRZ destination is exe-
cuted, EQ2 check if data bus value is zero,
which enables MUX1 and overrides pro-
gram counter to address stored in BR0 and
BR1 accumulators. Unlike in RISC however,
it requires three instructions to set new ad-
dress and jump. Similarly, CALL and RET
requires five and three instructions respec-
tively. These RISC equivalent instructions
are show in Listing 1.

Figure 5.3.2: Digital diagram of OISC stack pointer logic

Figure 5.3.3: Digital diagram of OISC stack control logic

12

Figure 5.4.1: Digital diagram of RISC program counter

Listing 1: OISC assembly code emulating
RISC JUMP, CALL and RET instructions.
%macro JUMP 1

BR1 %1 @1
BR0 %1 @0
BRZ 0x00

% endmacro

%macro CALL 1
BR1 %1 @1
BR0 %1 @0
STACK %% return @1
STACK %% return @0
BRZ 0x00
%% return:

% endmacro

%macro RET 0
BR0 STACK
BR1 STACK
BRZ 0x00

% endmacro

5.5 Arithmetic Logic Unit
This section will discuss ALU implementa-
tions of both processors. For fair compari-
son between OISC and RISC, ALU in both
system will have the same capabilities de-

scribed in table 5.5.1.

Name Description
ADD Arithmetic addition (inc. carry)
SUB Arithmetic subtraction (inc.

carry)
AND Bitwise AND
OR Bitwise OR

XOR Bitwise XOR
SLL Shift left logical
SRL Shift right logical
ROL Shifted carry from previous SLL
ROR Shifted carry from previous SRL
MUL Arithmetic multiplication
DIV Arithmetic division

MOD Arithmetic modulo

Table 5.5.1: Supported ALU commands
for both processors

5.5.1 OISC ALU

Due to the structure of OISC processor,
ALU source A and B are two latches that
are written into when ALU0 or ALU1 des-
tination address is present. ALU sources
are connected with every ALU operator and
performed in single clock cycle. This value
is stored in register so that it would imme-
diately available in a next clock cycle as a
source data. Figure 5.5.1 represents logic

13

diagram of ALU with only addition and
multiplication operators present. Note that
output of EQ3 is connected to enable of
REG3, enabling output of carry to be only
read after ADD source is requested. This pre-
vious source memory is also used for SUB,
ROL and ROR operations. This allows pro-
cessor to perform other operations such as
store or load values, before accessing carry
bit, or carried byte for ROL and ROR opera-
tions.

5.5.2 RISC ALU

RISC processor has very similar structure to
OISC with two exceptions. Inputs to ALU
comes from logic router that decided how
to route data in datapath. Output buffers
are replaced by one multiplexer that selects
single output from all ALU operations. An-
other point is that RISC ALU output is
16bit, higher byte saved in "ALU high byte
register" for MUL, MOD, ROL and ROR opera-
tions. This register is accessible with GETAH
instruction.

5.6 Program Memory
This section describes how instruction
memory (ROM) is implemented for both
processors.

5.6.1 RISC Program Memory

In order to allow dynamic instruction size
from one to four bytes a special memory
arrangement is made. A system was re-
quired to access word (8bits) from memory
and next three words. To achieve this four
ROM blocks been utilised, each containing
one fourth of sliced original data. Input ad-
dress is offset by adders ADDER1-3 and
further divided by four by removing two
least significant bits at addr0-3. Before
concatenating output of each ROM block
into final four bytes, ROM outputs q0-3 are
rearranged depending on ar signal. Note
that MUX1-4 each input is different, this
may be better visualised with Verilog code
in listing 2.

Figure 5.5.1: Digital diagram of OISC partial ALU logic

14

Listing 2: RISC sliced ROM memory mul-
tiplexer arrangement Verilog code
case(ar)

2’b00: data ={q3 ,q2 ,q1 ,q0};
2’b01: data ={q0 ,q3 ,q2 ,q1};
2’b10: data ={q1 ,q0 ,q3 ,q2};
2’b11: data ={q2 ,q1 ,q0 ,q3};

endcase

5.6.2 OISC Program Memory

OISC instructions are fixed 13 bits, which
causes different problems to RISC sliced
memory - non-standard memory word size.
To implement ROM in FPGA, Altera Cy-
clone IV M9K memory configurable blocks
were used. Each blocks as 9kB of mem-
ory each allowing 1024x9bit configuration.
Combining three of such blocks together
yields 27bits if readable data in single clock
cycle. To store instruction code to such con-
figuration, pairs of instruction machine code
sliced into three parts plus one bit for par-
ity check, see figure 5.6.2. Circuit extract-
ing each instruction is fairly simple, shown
in figure 5.6.3.

5.7 Instruction decoding
This section describes RISC and OISC dif-
ferences between instruction decoding and
immediate value handling.

5.7.1 RISC IMO

Already described in previous section 5.6,
instruction from memory comes as 4 bytes.
Least significant byte is sent to control
block, other three bytes are sent to imme-
diate override block (IMO) shown in fig-
ure 5.7.1. These three bytes are labelled
as immr.

IMO block is a solution to change imme-
diate value which enabled dynamically cal-
culated memory pointers, branches depen-
dant on register value or any other func-
tion that needs instruction immediate value
been replaced by calculated register value.
IMO is controlled by control block and
cdi.imoctl signal, which is changed by CI0,
CI1 and CI2 instructions. When signal
is 0h, this block is transparent connecting
immr directly to imm. When any of CI in-
structions executed, one of IMO register is
overridden by reg1 value from register file.
In order to override two or three bytes of
immediate, CI instructions need to be exe-
cuted in order. Only for one next instruc-
tion after last CI will have immediate bytes
changed depending on what are values in
IMO registers.
This circuit has two disadvantages:

1. Overriding immediate bytes takes one
or more clock cycles,

2. At override, immr bytes are ignored

Figure 5.6.1: Digital diagram of RISC sliced ROM memory logic

15

ROM0 ROM1 ROM2︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26︸ ︷︷ ︸︸ ︷︷ ︸︸︷︷︸

InstrA InstrB parity

Figure 5.6.2: OISC three memory words composition. Number inside box represents
bit index.

Figure 5.6.3: Digital diagram of OISC instruction ROM logic

therefore they are wasting instruction
memory space.

Second point can be resolved by designing
a circuit that would subtract the amount of
overridden IMO bytes from pc_off signal
(program counter offset that is dependant
on i-size value) at the program counter, thus
effectively saving instruction memory space.
This solution however would introduce a
complication with the assembler as addi-
tional checks would need to be done during
compiling to check if IMO instruction are
used.

5.7.2 OISC Instruction decoding

OISC immediate value is set in instruction
decoder shown in figure 5.7.2. Decoder op-
eration is simple - instruction machine code
is split into three parts as described in 5.1.2.
If instruction source address is 00h, con-
nect data bus with constant 0 via MUX2.
If immediate bit is 1, set source address to
00h (to make sure no other buffer source

connects to data bus), and connect instruc-
tion source address (immediate value) to
databus via MUX2 and BUF1.

5.8 Assembly
There are two steps between assembly code
and its execution on a processor. First it
needs to be converted to binary machine
code. Secondly, binary data needs to be
sliced to different parts described in sec-
tion 5.6. These slices also need to be con-
verted into appropriate formats, as simula-
tion, HDL synthesis and flashing memory
directly to FPGA memory, all use different
formats.

A universal assembler was implemented
with python for both processors. Flowchart
in figure 5.8.1 represents general structure
of assembler process. It splits assembly file
into three parts - sections, definitions and
macros. Definitions are keywords mapped
to values which are saved in global label
dictionary. Macros are a chunk of assem-
bly code and is used as templates.

16

Figure 5.7.1: Digital diagram of RISC immediate override system

Figure 5.7.2: Digital diagram of OISC instruction decoder

17

There are only two sections implemented
in assembler - .text and .data. Sec-
tion .text contains all machine instructions
which will be stored in program ROM mem-
ory. Section .data is used for global and
static data, and it will be written into RAM
memory. This section contains values such
as strings and structures uninitialised data
as labels which data is RAM memory loca-
tion.

Section .text is processed line by line.
Each has label, instruction name and in-
struction arguments. Label however is op-
tional, if line contains it, label is saved to
global label dictionary with program ad-
dress. If line instruction name is a macro,
line is replaces by macro and instruction
arguments are used as macro arguments.
Otherwise instruction name is decoded and
stored in instruction list with original argu-
ments.

After all instruction lines are completed,
each stored instruction arguments are pro-
cessed, labels are replaced with binary val-
ues, any other processing is done such as
addition by constant, byte selection, etc.
Completed list is then saved as raw binary.
Similarly, .data section labels also replaced
and it is saved as binary data.

Figure 5.8.1: Flow chart of assember
converting assembly code into machine code
and memory binary.

5.9 System setup
This section will describe how system is
setup.

Processors are implemented on Terasic
DE0-Nano board that use Altera Cyclone
IV, EP4CE22P17C6 FPGA, which is man-
ufactured using 60nm fabrication technol-
ogy. FPGA has embedded memory struc-
ture consisting of columns of M9K mem-
ory blocks mentioned in Subsection 5.6.2.
These memory structures were used to im-
plement processors RAM and ROM memo-
ries. Board also has 32MB SDRAM chip,
which initially was intended to be used.
This set design criteria to have 24bit ad-
dress space. However, M9K memory was
used instead for simplicity.

FPGA has embedded phase-locked loop
(PLL) stucture that is used to change

18

50MHz input that is generated by on-board
crystal to other frequencies.

DE0-Nano board as integrated JTAG
port that is used to upload synthesised
code and additional debugging tools. Quar-
tus has "Signal Tap Logic Analyzer" tools
that allow setup probes and sources within
FPGA logic and control them via JTAG.
"In-System Memory Content Editor" tool
allows read and modify M9K memory which
enabled quick machine code uploading to
FPGA without need to resynthesise HDL
code. This also allow reading RAM content
to debug program.

All Quartus functions can be imple-
mented via TCL script. This allowed con-
structing Makefile to allow quick build func-
tions. Quatus signal and memory tool func-
tions were used to write a small program
with Python and Curses library to read
and change internal processor state which
allowed easy debugging while writing pro-
grams.

6 Results and Analysis

6.1 FPGA logic component
composition

This subsection looks at test and its results
to find how much FPGA logic components
each processor takes and what is composi-
tion of each part.

Test was performed with Quartus syn-
thesis tool and viewing flow summary re-
port. This report includes synthesised de-
sign metrics including total logic elements,
registers, memory bits and other FPGA re-
sources. Test will only look at logic ele-
ments and registers. Total number of logic
elements was found out by synthesising
full processors, then commenting relevant
parts of code, re-synthesising and view-
ing changes in total logic elements. Such
method may not be the most accurate, be-
cause during HDL synthesis circuit is opti-
mised an unused connections removed. This

means that more logic may be not synthe-
sised than intended.

There are four parts of each processor
that will be tested:

1. Common - processor auxiliary logic
that is used by both processors. It
includes communication block with
UART, RAM and PLL (Phase-Locked
Loop, for master clock generation).

2. ALU - as described in section 5.5, both
processors have slightly different imple-
mentation of ALU.

3. Memory - processors memory man-
agement, including stack.

4. Other - reminding logic of processor
that was not analysed.

Processors FPGA logic element composition

OISC RISC
0

500

1000

1500

2000

2500

3000

3500

L
o

g
ic

 e
le

m
e

n
ts

COMMON

ALU

MEMORY

OTHER

Figure 6.1.1: Bar graph of FPGA logic
components taken by each processor.

Results of a test are shown in figures 6.1.1
and 6.1.2. Common logic uses 293 logic el-
ements and 170 registers. OISC uses 1705
logic elements, while RISC uses 3218. Ex-
cluding common logic, OISC takes 48.3% of
RISC’s logic elements.

19

Processors FPGA register usage composition

OISC RISC
0

100

200

300

400

500

600

700

800

R
e

g
is

te
rs

COMMON

ALU

MEMORY

OTHER

Figure 6.1.2: Bar graph of FPGA register
resources taken by each processor.

OISC uses 726 logic elements, while RISC
uses 407. Excluding common logic, OISC
uses 78.4% more registers than RISC.

Looking at composition, OISC ALU
takes 30.2% more logic gates. Looking at
figure 6.1.2, high number of OISC ALU reg-
isters can be observed which concludes, that
higher resource usage is OISC ALU code in-
clude buffer logic.

Memory logic elements composition of
OISC is only 34.4% of RISC’s and 7% lower
for register resources, comparing to RISC.
This indicate that by removing memory
logic for RISC, synthesis tool may removed
also other parts of processor, possibly part
of control block because it mostly contains
combinational logic.

Other logic includes instruction decoding
with ROM, register file, program counter.
RISC exclusively has control block. Note
that OISC uses only three ROM memory
blocks whereas RISC uses four as explained
in section 5.6, however this should make a
minimal difference as M9K memory blocks
are not included in FPGA logic element or
register count. Comparing both processors,
OISC has only 37% of other logic compo-
nents to RISC, however it has 2.28 times
more registers. This shows a logic compo-
nent - register trade-off. OISC buffer and
common registers logic that connects bus
require many more registers whereas RISC
uses combination logic in control block in

order to control same data in datapath.
Much higher logic components in RISC

can be also explained more complicated
register file, ROM memory logic and pro-
gram counter. All of these components has
some additional logic for timing correction
or additional functionality required by these
blocks integration into datapath.

6.2 Power analysis
Power analysis was performed to anal-
yse power consumption of both processors.
This has been accomplished by connect-
ing FPGA board to a laboratory power
supply with 4V to an external power in-
put. A shunt resistor of was used of 1.020Ω
was connected in series to calculate cur-
rent. Supply voltage and voltage across
shut resistor were measured using oscillo-
scope with data sampling feature. Three
tests have been performed with different
processor configurations. Between each
tests a period of about 5 minutes was given
for FPGA to reach steady state.

Processor power consumtion

None RISC OISC
358.5

359

359.5

360

360.5

361

P
o

w
e

r
(m

W
)

Figure 6.2.1: Measured power of proces-
sors when implemented on FPGA, running
16bit multiplication function in loop. None
indicates auxiliary-only power.

First configuration is "None" or auxiliary-
only power, which includes whole FPGA
board, voltage regulators, and synthesised
logic on FPGA required to support a pro-
cessor (such as PLL, UART, Input/Output
control, RAM). RISC and OISC indicate
both processor implementations on FPGA,

20

each running multiplication program in a
loop. Figure 6.2.1 represents power results.
RISC and OISC bars in the graph indicate
auxiliary power plus processor power, which
means that the processor itself takes rel-
atively small amount comparing to auxil-
iary power, about 0.5%. Result shows that
OISC require 0.4%, which including noise is
almost insignificant result.

During this test clock frequency of 1MHz
was used. Due to equipment unavailability,
further tests were not carried out to inves-
tigate power consumption at different fre-
quencies. Due to constant noise, running at
higher frequency may result in significant
difference between processors.

6.2.1 Activity Factor

An activity factor could be also found us-
ing Equation 4 where P is power, Ctotal in-
dicate total gate capacitance and VDD indi-
cate voltage supplied to the transistors.

α =
P

Ctotal · f · V 2
DD

(4)

As Ctotal and VDD are constants, measuring
power at different frequencies allows finding
activity factor. This value could be used to
compare how much of a processor circuit is
active. Further design improvements could
be used to optimise power [11, 15, 22, 23].

6.3 Benchmark Programs
A number of and programs have been writ-
ten to test both processors. These involve
simple functions that could be commonly
used in 8bit processors:

• Printing: Sends data to UART. It in-
cludes waiting until UART is available
for transmission.

• Printing unsinged integer: Uses
binary-coded decimal algorithm to
convert 8 or 16bit binary value to
decimal value and print it.

• 16bit multiplication: Uses simple ma-
trix multiplication.

• 16bit division: Uses Long division algo-
rithm to divide two 16bit numbers, re-
sult including a reminder.

• 16bit modulo: Uses "Russian Peasant
Multiplication" algorithm to perform
Modulo operation with two 16bit num-
bers.

• Prime number calculator: Uses Sieve
of Atkins algorithm [26] to calculate
primer number, operates on 16bit num-
bers and utilise 16bit multiplication
and modulo functions.

6.3.1 Instruction composition

This test is performed to investigate in-
struction composition of each function to
see how similar it is between RISC and
OISC processors.

• MOVE - All instructions that move data
around internal processor registers.

• ALU - Instructions that are used to per-
form ALU operation.

• MEMORY - Instructions that are re-
quired to send/retrieve data from sys-
tem memory, except stack.

• STACK - Instructions that push/pop
data from memory stack.

• COM - Instruction(s) that send/receive
data from communication block.

• BRANCH - Instructions that are used
to make program branching.

• OTHER - Any other instructions.

21

Name Instructions
MOVE MOVE, CPY0, CPY1, CPY2,

CPY3, CI0, CI1, CI2
ALU ADD, ADDI, SUB, SUBI,

AND, ANDI, OR, ORI,
XOR, XORI, DIV, MUL,
ADDC, SUBC, INC, DEC,
SLL, SRL, SRA, GETAH

MEMORY LWLO, LWHI, SWLO, SWHI
STACK PUSH, POP
COM COM

BRANCH BEQ, BGT, BGE, BZ,
JUMP, CALL, RET

Table 6.3.1: RISC processor instruction
groups used in instruction composition test.

Name Destination
MOVE REG0, REG1
ALU ALU0, ALU1

MEMORY MEM0, MEM1, MEM2,
MEMLO, MEMHI

STACK STACK
COM COMA, COMD

BRANCH BR0, BR1, BRZ

Table 6.3.2: OISC processor instruction
desination groups used in instruction com-
position test

Name Instructions
MOVE ALU0, ALU1, REG0,

REG1, PC0, PC1, NULL,
IMMEDIATE

ALU ADD, ADDC, SUB, SUBC,
AND, OR, XOR, SLL, SRL,
EQ, GT, GE, NE, LT, LE,
MULLO, MULHI, DIV, MOD,
ADC, SBC, ROL, ROR

MEMORY MEM0, MEM1, MEM2,
MEMLO, MEMHI

STACK STACK
COM COMA, COMD

BRANCH BR0, BR1

Table 6.3.3: OISC processor instruction
source groups used in instruction composi-
tion test

Each function was ran on simulated pro-
cessor, program counter and instruction
been recorded into file at every cycle.
File recording was done with SytemVerilog
test bench, it started recording when pro-
gram counter matched .start location and
stopped when it matched .done location.
Code shown in Listing 3 enabled both lo-
cation to be static, not depending on test
function executed.

Listing 3: Assembly frame for executring
tests
setup:

JUMP .start
.done:

JUMP .done
.start:

; Setup values
; Call function
JUMP .done

Each function recorded file then was fur-
ther analysed and each instruction was
grouped. Recorded program counter was
used to find effective program space. This
has been achieved by calculating unique in-
stances of program counter and summing
up instruction size for each of them. In
RISC, dynamic instruction size has been
taken into account.

From results in Figure 6.3.1 few key dif-
ferences can be seen. Across every test,
OISC has much more BRANCH destina-
tion and MOVE source groups. BRANCH
group can be explained by emulated CALL,
RET and JUMP instruction explained in sec-
tion 5.4.2. High number of MOVE source
group instructions may be explained by us-
ing immediate values as separate source,
where RISC uses instruction that integrate
with immediate in instructions such as
ADDI. In most cases ALU group instructions
are also higher than for OISC comparing
to RISC. This shows lower OISC ALU effi-
ciency, mostly due to need to move data to
septate accumulators.

22

16bit Modulo 0001h % FFFFh

0

5

10

15

20
In

s
tr

u
c
ti
o

n
s

16bit Modulo FFFFh % 0001h

0

200

400

600

16bit Modulo FFFFh % FFFFh

0

20

40

60

In
s
tr

u
c
ti
o

n
s

16bit Multiplication

0

5

10

15

20

Print Character

0

5

10

15

In
s
tr

u
c
ti
o

n
s

Print 16bit unsigned int FFFFh

0

100

200

300

Print 8bit unsigned int 00h

M
O

VE
ALU

M
EM

O
RY

STACK
CO

M

BRANCH

O
THER

0

10

20

30

In
s
tr

u
c
ti
o

n
s

Print 8bit unsigned int FFh

M
O

VE
ALU

M
EM

O
RY

STACK
CO

M

BRANCH

O
THER

0

20

40

60

80

RISC

OISC Destination

OISC Source

Figure 6.3.1: Graph of instruction composition for every benchmark program.

6.3.2 Performance

This subsection investigates time and clock
cycles to run benchmark programs. Simula-
tion was sued to find a number of cycles re-
quired to execute each function. Note that
prime number calculator was not simulated
due to too complex dynamic nature of pro-
gram.

Print 16bit decimal and modulo opera-
tion were executed with different arguments
to show the worst and the best case scenar-
ios as algorithms length depend on inputs.
This is not the case for 16bit multiplication
as this it has no branching.

Results are shown in Figure 6.3.2. In
most cases, OISC requires around 55-67%

more instruction, with some exceptions.
These results can be better explained in fol-
lowing subsection 6.3.1.

23

Processor cycles per function

208
361

618

59 27 52

204

534

1076

99
49 55

Prin
t D

ecim
al 0

000h

Prin
t D

ecim
al F

FFFh

Modulus FFFFh%0001h

Modulus FFFFh%FFFFh

Modulus 0001h%FFFFh

Multip
ly 16bit

0

200

400

600

800

1000

1200

N
u

m
e

r
o

f
c
y
c
le

s
RISC

OISC

Figure 6.3.2: Simulated results of cycles
that taken to perform function.

Another set of benchmarks have been
performed and on both processors once they
been implemented on FPGA. Time taken
for perform each set has been recorded.
This have been done via UART connection,
a single character was sent to indicate start
and stop of benchmark. In order to void
slight timing variation due low baud rate
of UART, each benchmark was performed
many iterations. Figure 6.3.3 represents re-
sults.

Time taken for each benchmark

Prim
e N

umbers

Multip
ly

Modulo 0010h

Modulo FFFFh
BCD

0

10

20

30

40

50

60

70

T
im

e
 (

s
)

RISC

OISC

Figure 6.3.3: Time taken perform each
benchmark on FPGA at 1MHz clock.

Results indicate that on average OISC
takes about 71% longer to execute same
benchmark. This is close to results found
with simulation. Prime number calculator
have taken 3.26 times longer.

Benchmarks include:

• Prime Numbers: Calculate every
prime number between 5 to 65536.

• Multipy: 16bit multiplication iterated
65536 times.

• Modulo 0010h: 16bit 0010h modulo
that operated on every number be-
tween 0 and 65536.

• Modulo FFFFh: 16bit FFFFh modulo
that operated on every number be-
tween 0 and 65536.

• BDC: Encoded 16bit binary to ASCII
decimal number without printing.

6.3.3 Program space

Data collected from previous instruction
composition results were also used to find
effective program size. Effective program
size only includes instruction that been ex-
ecuted depending on argument, meaning
that it does not fully represent complete
function. A specific argument might cause
branching and skipping some function code
which would not be added to effective pro-
gram size. In this test, the main objective
is to look difference in instruction size re-
quired to execute the same function, there-
fore not representing full program size is not
relevant.

24

Benchmark functions effective program size
M

o
d
 0

0
0
1
h
 %

 F
F
F
F
h

M
o
d
 F

F
F
F
h
 %

 0
0
0
1
h

M
o
d
 F

F
F
F
h
 %

 F
F
F
F
h

1
6
b
it

m
u
lti

p
ly

P
ri
n
t
ch

a
r

P
ri
n
t
u
in

t1
6
 F

F
F
F
h

P
ri
n
t
u
in

t8
 0

0
h

P
ri
n
t
u
in

t8
 F

F
h

0

500

1000

1500

2000
P

ro
g
ra

m
 s

iz
e
 i
n
 b

it
s

RISC

OISC

Figure 6.3.4: Bar graph showing effective
size in bits each benchmark function is tak-
ing in program memeory.

Figure 6.3.4 represents effective program
size for each test function. On average,
OISC instructions take 41.71% more space
which is expected.

6.4 Maximum clock frequency
To find maximum clock frequency, proces-
sors were loaded with basic print string
function an d 16bit multiplication. Then
frequency was constantly increased until re-
sulting output though UART was not cor-
rect.

In order to change clock frequency, three
parameters were changed and HDL code
resynthesised:

• PLL frequency multiplier and di-
vider: PLL takes 50MHz clock that is
sourced from crystal on FPGA board
and converts it to master clock fmclk.
Multiplier and divider values are used
to adjust fmclk.

• UART frequency divider: Division
value was calculated as D =

⌊
fmclk

4fbaud

⌋
.

UART rate was set to 9600 baud.
UART module itself has four times
oversample.

Frequency was changed in 5MHz incre-
ments.

Theoretical maximum frequency was
found using Quartus Timing Analysis tool.
Slow 1200mV 85◦C model was used.

Theoretical Actual
RISC 114.08MHz 75-70MHz
OISC 64.68MHz 45-40MHz

Table 6.4.1: Theoretical and actual max-
imum frequencies of both processors.

Theoretical and actual results show unex-
pected results shown in Table 6.4.1, RISC
operated at about 40% higher maximum
frequency than OISC.

As explained in Subsection 5.2.3, OISC
logic blocks has about twice less time for
data propagation. Keeping that in mind,
and assuming that latch propagation and
register setup periods are insignificant to
critical path of OISC logic block, maximum
OISC frequency could be double as high as,
reaching 80-90MHz. This also assumes that
there is no other part of processor would
have limit. Further timing analysis needs
to be carried out to confirm this.

6.5 Future work
RISC has more sophisticated logic for var-
ious processor components. It is expected
to see RISC having better results due
to its better optimisation. OISC should
be implemented with multiple data & in-
struction buses. This could be performed
with minimal changes on hardware, how-
ever would require many changes in assem-
bly programs. Instruction composition re-
sults show that OISC takes more instruc-
tions to store values in accumulators, which
can can greatly benefit from multi-bus par-
allelisation. There a single additional bus
should reduce benchmarks time by up to
double, which would be more comparable
with RISC. In addition, multi-bus OISC can
perform truly parallel programs assuming
it has enough processor resources to per-
form operations (for example operate differ-
ent ALU operations at the same time). This

25

potentially would be dominant feature over
RISC in time-sensitive programs, GPIO
(General Purpose Input/Output) and inter-
rupt handling.

Additional buses would not greatly in-
crease processor logic element size, espe-
cially when using interconnect optimisation
techniques [22, 23]. Matching processor
complexity should also allow more fair and
direct comparison specifically between two
architectures.

A number of other improvements and fu-
ture research are proposed:

1. Perform more tests on power analysis
with different frequencies. Find the
activity factor described in Subsection
6.2.1.

2. Further investigate maximum fre-
quency. Try to resolve OISC timing
issue and repeat maximum frequency
test. This would allow to confirm or
deny theorised higher frequency capa-
bilities for OISC.

3. Design a higher level language compiler
such as BASIC or C. This would al-
low to perform more complicated pro-
grams which would more closely relate
to microcontroller operations. How-
ever, OISC compiler would need extra
optimisation layer to efficiently organ-
ise instructions.

4. Compare proposed processor designs
with other commercially available 8-bit
processors such as Atmel AVR micro-
controllers, Motorola 6800 family and
Microchip PIC.

7 Conclusion
In this paper, two novel RISC and OISC-
MOVE architectures are designed and im-
plemented on FPGA. Logic element re-
quirements, power consumption, maximum
frequency where tested and timings of set
of benchmark programs were executed to

compare these two processors to investigate
OISC-MOVE advantages. It is shown that
power consumption differences are insignif-
icant, RISC managed to reach 40% higher
maximum frequency at 75-70MHz, however
due to a design fault in OISC. OISC re-
quired 51.7% less logic elements to imple-
ment on FPGA. Benchmarks showed that
OISC took 71% longer to execute on aver-
age while requiring 41.71% more instruction
space.

This project has sucessfully covered its
goals in studying architectures and inves-
tigating alternative OISC implementation.
Results shows that proposed implementa-
tion of OISC-MOVE may be only suitable
for microprocessor application with very
strict logic element limit.

RISC processor has shown to be supe-
rior in tests, however it has more opti-
mised implementation. Further research in
needed to investigate OISC-MOVE perfor-
mance with multiple data and instruction
buses to match RISC complexity.

References
[1] T. Jamil. “RISC versus CISC”. In: vol. 14. 3.

1995, pp. 13–16. doi: 10.1109/45.464688.
[2] E. Blem, J. Menon, and K. Sankaralingam.

“Power struggles: Revisiting the RISC vs.
CISC debate on contemporary ARM and x86
architectures”. In: 2013. doi: 10.1109/hpca.
2013.6522302.

[3] Minato Yokota, Kaoru Saso, and Yuko Hara-
Azumi. “One-instruction set computer-based
multicore processors for energy-efficient
streaming data processing”. In: 2017. doi:
10.1145/3130265.3130318.

[4] Tanvir Ahmed et al. “Synthesizable-from-C
Embedded Processor Based on MIPS-ISA
and OISC”. In: 2015. doi: 10.1109/euc.
2015.23.

[5] William F Gilreath and Phillip A Laplante.
Computer Architecture: A Minimalist Per-
spective. Kluwer Academic Publishers, 2003.

26

https://doi.org/10.1109/45.464688
https://doi.org/10.1109/hpca.2013.6522302
https://doi.org/10.1109/hpca.2013.6522302
https://doi.org/10.1145/3130265.3130318
https://doi.org/10.1109/euc.2015.23
https://doi.org/10.1109/euc.2015.23

[6] H. Corporaal and H. Mulder. “MOVE: a
framework for high-performance processor
design”. In: Supercomputing ’91:Proceedings
of the 1991 ACM/IEEE Conference on Su-
percomputing. 1991, pp. 692–701. doi: 10 .
1145/125826.126159.

[7] Henk Corporaal. MOVE32INT: Architecture
and Programmer’s Reference Manual. Tech.
rep. 1994.

[8] H. Corporaal. “Design of transport triggered
architectures”. In: Proceedings of 4th Great
Lakes Symposium on VLSI. 1994, pp. 130–
135. doi: 10.1109/GLSV.1994.289981.

[9] J. Hu et al. “A Novel Architecture for Fast
RSA Key Generation Based on RNS”. In:
2011 Fourth International Symposium on
Parallel Architectures, Algorithms and Pro-
gramming. 2011, pp. 345–349. doi: 10.1109/
PAAP.2011.75.

[10] A. Burian, P. Salmela, and J. Takala. “Com-
plex fixed-point matrix inversion using trans-
port triggered architecture”. In: 2005 IEEE
International Conference on Application-
Specific Systems, Architecture Processors
(ASAP’05). 2005, pp. 107–112. doi: 10 .
1109/ASAP.2005.25.

[11] J. ádník and J. Takala. “Low-power Pro-
grammable Processor for Fast Fourier Trans-
form Based on Transport Triggered Archi-
tecture”. In: ICASSP 2019 - 2019 IEEE In-
ternational Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2019,
pp. 1423–1427. doi: 10.1109/ICASSP.2019.
8682289.

[12] P. Hamalainen et al. “Implementation of en-
cryption algorithms on transport triggered
architectures”. In: ISCAS 2001. The 2001
IEEE International Symposium on Circuits
and Systems (Cat. No.01CH37196). Vol. 4.
2001, 726–729 vol. 4. doi: 10.1109/ISCAS.
2001.922340.

[13] P. Salmela et al. “Scalable FIR filtering on
transport triggered architecture processor”.
In: International Symposium on Signals, Cir-
cuits and Systems, 2005. ISSCS 2005. Vol. 2.
2005, 493–496 Vol. 2. doi: 10.1109/ISSCS.
2005.1511285.

[14] B. Rister et al. “Parallel programming of
a symmetric transport-triggered architecture
with applications in flexible LDPC encod-
ing”. In: 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 2014, pp. 8380–8384. doi:
10.1109/ICASSP.2014.6855236.

[15] J. Multanen et al. “Power optimizations for
transport triggered SIMD processors”. In:
2015 International Conference on Embedded
Computer Systems: Architectures, Modeling,
and Simulation (SAMOS). 2015, pp. 303–
309. doi: 10.1109/SAMOS.2015.7363689.

[16] M. Safarpour, I. Hautala, and O. Silvén.
“An Embedded Programmable Processor for
Compressive Sensing Applications”. In: 2018
IEEE Nordic Circuits and Systems Confer-
ence (NORCAS): NORCHIP and Interna-
tional Symposium of System-on-Chip (SoC).
2018, pp. 1–5. doi: 10.1109/NORCHIP.2018.
8573494.

[17] J. Heikkinen et al. “Evaluating template-
based instruction compression on transport
triggered architectures”. In: The 3rd IEEE
International Workshop on System-on-Chip
for Real-Time Applications, 2003. Proceed-
ings. 2003, pp. 192–195. doi: 10 . 1109 /
IWSOC.2003.1213033.

[18] J. Helkala et al. “Variable length instruc-
tion compression on Transport Triggered Ar-
chitectures”. In: 2014 International Confer-
ence on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS
XIV). 2014, pp. 149–155. doi: 10 . 1109 /
SAMOS.2014.6893206.

[19] J. Wei et al. “Program Compression Based
on Arithmetic Coding on Transport Trig-
gered Architecture”. In: 2008 International
Conference on Embedded Software and Sys-
tems Symposia. 2008, pp. 126–131. doi: 10.
1109/ICESS.Symposia.2008.9.

[20] Su Wang et al. “An instruction redundancy
removal method on a transport triggered ar-
chitecture processor”. In: Proceedings of the
2009 12th International Symposium on Inte-
grated Circuits. 2009, pp. 602–604.

[21] L. Jiang, Y. Zhu, and Y. Wei. “Software
Pipelining with Minimal Loop Overhead on
Transport Triggered Architecture”. In: 2008
International Conference on Embedded Soft-
ware and Systems. 2008, pp. 451–458. doi:
10.1109/ICESS.2008.18.

[22] T. Pionteck et al. “Hardware evaluation of
low power communication mechanisms for
transport-triggered architectures”. In: 14th
IEEE International Workshop on Rapid Sys-
tems Prototyping, 2003. Proceedings. 2003,
pp. 141–147. doi: 10. 1109 / IWRSP . 2003 .
1207041.

27

https://doi.org/10.1145/125826.126159
https://doi.org/10.1145/125826.126159
https://doi.org/10.1109/GLSV.1994.289981
https://doi.org/10.1109/PAAP.2011.75
https://doi.org/10.1109/PAAP.2011.75
https://doi.org/10.1109/ASAP.2005.25
https://doi.org/10.1109/ASAP.2005.25
https://doi.org/10.1109/ICASSP.2019.8682289
https://doi.org/10.1109/ICASSP.2019.8682289
https://doi.org/10.1109/ISCAS.2001.922340
https://doi.org/10.1109/ISCAS.2001.922340
https://doi.org/10.1109/ISSCS.2005.1511285
https://doi.org/10.1109/ISSCS.2005.1511285
https://doi.org/10.1109/ICASSP.2014.6855236
https://doi.org/10.1109/SAMOS.2015.7363689
https://doi.org/10.1109/NORCHIP.2018.8573494
https://doi.org/10.1109/NORCHIP.2018.8573494
https://doi.org/10.1109/IWSOC.2003.1213033
https://doi.org/10.1109/IWSOC.2003.1213033
https://doi.org/10.1109/SAMOS.2014.6893206
https://doi.org/10.1109/SAMOS.2014.6893206
https://doi.org/10.1109/ICESS.Symposia.2008.9
https://doi.org/10.1109/ICESS.Symposia.2008.9
https://doi.org/10.1109/ICESS.2008.18
https://doi.org/10.1109/IWRSP.2003.1207041
https://doi.org/10.1109/IWRSP.2003.1207041

[23] T. Viitanen et al. “Heuristics for greedy
transport triggered architecture interconnect
exploration”. In: 2014 International Confer-
ence on Compilers, Architecture and Synthe-
sis for Embedded Systems (CASES). 2014,
pp. 1–7. doi: 10.1145/2656106.2656123.

[24] S. Hauser, N. Moser, and B. Juurlink.
“SynZEN: A hybrid TTA/VLIW architec-
ture with a distributed register file”. In:
NORCHIP 2012. 2012, pp. 1–4. doi: 10 .
1109/NORCHP.2012.6403142.

[25] David Money Harris and Sarah L Harris.
Digital design and computer architecture.
2nd ed. Elsevier, 2013.

[26] François Morain. “Atkin’s Test: News from
the Front”. In: 1989, pp. 626–635. doi: 10.
1007/3-540-46885-4_59.

28

https://doi.org/10.1145/2656106.2656123
https://doi.org/10.1109/NORCHP.2012.6403142
https://doi.org/10.1109/NORCHP.2012.6403142
https://doi.org/10.1007/3-540-46885-4_59
https://doi.org/10.1007/3-540-46885-4_59

8 Appendix

8.1 Processor instruction set tables

Table 8.1.1: Instruction set for RISC processor. * Required immediate size in bytes

Instr. Description I-size *
2 register instructions

MOVE Copy value from one register to other 0
ADD Arithmetical addition 0
SUB Arithmetical subtraction 0
AND Logical AND 0
OR Logical OR 0
XOR Logical XOR 0
MUL Arithmetical multiplication 0
DIV Arithmetical division (inc. modulo) 0

1 register instructions
COPY0 Copy intimidate to a register 0 1
COPY1 Copy intimidate to a register 1 1
COPY2 Copy intimidate to a register 2 1
COPY3 Copy intimidate to a register 3 1
ADDC Arithmetical addition with carry bit 0
ADDI Arithmetical addition with immediate 1
SUBC Arithmetical subtraction with carry bit 0
SUBI Arithmetical subtraction with immediate 1
ANDI Logical AND with immediate 1
ORI Logical OR with immediate 1
XORI Logical XOR with immediate 1
CI0 Replace intimidate value byte 0 for next instruction 1
CI1 Replace intimidate value byte 1 for next instruction 1
CI2 Replace intimidate value byte 2 for next instruction 1
SLL Shift left logical 1
SRL Shift right logical 1
SRA Shift right arithmetical 1
LWHI Load word (high byte) 3
SWHI Store word (high byte, reg. only) 0
LWLO Load word (low byte) 3
SWLO Store word (low byte, stores high byte reg.) 3
INC Increase by 1 0
DEC Decrease by 1 0
GETAH Get ALU high byte reg. (only for MUL & DIV & ROL &

ROR)
0

GETIF Get interrupt flags 0
PUSH Push to stack 0
POP Pop from stack 0
COM Send/Receive to/from com. block 1
BEQ Branch on equal 3
BGT Branch on greater than 3

29

Table 8.1.1: Instruction set for RISC processor. * Required immediate size in bytes

Instr. Description I-size *
BGE Branch on greater equal than 3
BZ Branch on zero 2

0 register instructions
CALL Call function, put return to stack 2
RET Return from function 0
JUMP Jump to address 2
RETI Return from interrupt 0
INTRE Set interrupt entry pointer 2

Table 8.1.2: Instructions for OISC processor.

Name Description
Destination Addresses

ACC0 Set ALU source A accumulator
ACC1 Set ALU source B accumulator
BR0 Set Branch pointer register (low byte)
BR1 Set Branch pointer register (high byte)
BRZ If source value is 0, set program counter to branch pointer
STACK Push value to stack
MEM0 Set Memory pointer register (low byte)
MEM1 Set Memory pointer register (middle byte)
MEM2 Set Memory pointer register (high byte)
MEMHI Save high byte to memory at memory pointer
MEMLO Save low byte to memory at memory pointer
COMA Set communication block address register
COMD Send value to communication block
REG0 Set general purpose register 0
REG1 set general purpose register 1

Source Addresses
NULL Get constant 0
ALU0 Get value at ALU source A accumulator
ALU1 Get value at ALU source B accumulator
ADD Get Arithmetical addition of ALU sources
ADDC Get Arithmetical addition carry
ADC Get Arithmetical addition of ALU sources and carry
SUB Get Arithmetical subtraction of ALU sources
SUBC Get Arithmetical subtraction carry
SBC Get Arithmetical subtraction of ALU sources and carry
AND Get Logical AND of ALU sources
OR Get Logical OR of ALU sources
XOR Get Logical XOR of ALU sources
SLL Get ALU source A shifted left by source B
SRL Get ALU source A shifted right by source B
ROL Get rolled off value from previous SLL instance
ROR Get rolled off value from previous SRL instance

30

Table 8.1.2: Instructions for OISC processor.

Name Description
MULLO Get Arithmetical multiplication of ALU sources (low byte)
MULHI Get Arithmetical multiplication of ALU sources (high byte)
DIV Get Arithmetical division of ALU sources
MOD Get Arithmetical modulo of ALU sources
EQ Check if ALU source A is equal to source B
GT Check if ALU source A is greater than source B
GE Check if ALU source A is greater or equal to source B
NE Check if ALU source A is not equal to source B
LT Check if ALU source A is less than source B
LE Check if ALU source A is less or equal to to source B
BR0 Get Branch pointer register value (low byte)
BR1 Get Branch pointer register value (high byte)
PC0 Get Program counter value (low byte)
PC1 Get Program counter value (high byte)
MEM0 Get Memory pointer register value (low byte)
MEM1 Get Memory pointer register value (middle byte)
MEM2 Get Memory pointer register value (high byte)
MEMHI Load high byte from memory at memory pointer
MEMLO Load low byte from memory at memory pointer
STACK Pop value from stack
ST0 Get stack address value (low byte)
ST1 Get stack address value (high byte)
COMA Get communication block address register value
COMD Read value from communication block
REG0 Get value from general purpose register 0
REG1 Get value from general purpose register 1

31

	Abstract
	Introduction
	Aims and Objectives
	Related Work
	Project contents

	Goals and Objectives
	RISC Processor
	OISC Processor
	Design Criteria
	Benchmark

	Theory and Analytical Bases
	RISC Processor
	Pipelining
	Multiple cores

	OISC Processor
	OISC Pipelining

	Predictions
	Execution time
	Instruction Space
	Resources

	Technical Method
	Machine Code
	RISC Machine Code
	OISC Machine Code

	Data flow
	RISC Datapath
	OISC Datapath
	OISC Datapath Implementation Problems

	Stack
	RISC Stack
	OISC Stack

	Program Counters
	RISC Program Counter
	OISC Program Counter

	Arithmetic Logic Unit
	OISC ALU
	RISC ALU

	Program Memory
	RISC Program Memory
	OISC Program Memory

	Instruction decoding
	RISC IMO
	OISC Instruction decoding

	Assembly
	System setup

	Results and Analysis
	FPGA logic component composition
	Power analysis
	Activity Factor

	Benchmark Programs
	Instruction composition
	Performance
	Program space

	Maximum clock frequency
	Future work

	Conclusion
	Appendix
	Processor instruction set tables

