UNIVERSITY COLLEGE LONDON

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Performance characterisation of
8-bit RISC and OISC architectures

Author: Supervisor: Second Assessor:
Mindaugas Prof. Robert Dr. Ed
JARMOLOVICIUS KILLEY ROMANS

zceemjaQucl.ac.uk r.killey@Qucl.ac.uk eromans@uclacuk
SN: 17139494

A BEng Project Final Report

April 20, 2020

mailto:zceemja@ucl.ac.uk
mailto:r.killey@ucl.ac.uk
mailto:e.romans@ucl.ac.uk

Contents

T—Absfraci

2__Introduction

.1 Aims and Objectives
2 Related Workl

b Goals and Objectives
Bl B1SC Processon

B2 OISC Processod

b.o Design Criterial
B4 Benchmark

d 'I'heory and Analytical Bbaseg
a1 BISC Processod
A.1.1 Pipelining

d.1.2 Multiple cored

a2 OISO Processod

gd.2.1 OIS0 Fipelining . . .
U3 Predictiond

ZERE| Execntion timd

k.o0.2 Instruction Spacqd . .
A3 Resolrced

5 _Tecl [VIetl |
bl Machine Codd

b 11 RISC Machine Codd

B 1?2 OISC Machine Codd

b.2.1 RISC Datapath . . .

b.2.2 OIS0 Datapath . . .

p.2.0o Ol5C Datapath lm{
plementation FProblemsg

hoa | RISC Stack

b3 7 OISCSfacd
p.4 FProgram Countery

p.4.1 RISCU Program Countei

p.4.2 Ol5C Program Countei
b.o Arithmetic Logic Unif

ELh T OISCATUO

b7 RISCATO
p.0 Program Memory

p.0.1 RISCU Program Memory

p.0.2 Ol5C Program Memory]
b./ _Instruction decoding

b7 1T RISCINQO

A AR R R WD NN N

N EEN IS BEN e NI« N o NI, SITSUITN

© © o o o

10

10
10
11
11
11
11

13
13
14
14
14

15
15

b (2 OISC Instriuction ded

dingd 16

b.8 "Assembly] 16

b.9 Systemsetug 18

b Results and Analysig 19
p.l FPGA logic component com-

........... 19

b.2 Power analysi§. 20

b.2.1 Activity Factog . . . 21

b.3 Benchmark Programg 21

b.3.T Instruction composition 21

632 Perfarmancd 23

p.3.3 Program spacd . .. 24

b.4 Maximum clock frequency] . 25

A _Fnftnre work 25

I Conclusionl 26

B Appendix 29

KT Processor instriction set tabled 29

1 Abstract

One Instruction Set Computer (OISC),
commonly implemented as Transport Trig-
gered Architectures (TTAs) is a promis-
ing architecture that is successfully used
in Application-Specific Instruction Set Pro-
cessors (ASIPs) exploiting operation style
parallelism, while keeping simplicity and
flexibility. There is a lack of research in
general purpose OISC with single data-
instruction bus that could be used in lower
power and performance comparable to a
8bit microcontroller using traditional Re-
duce Instruction Set Computer (RISC) ar-
chitecture. The paper designs two novel
8bit RISC and OISC processors, and in-
vestigates their characteristics and perfor-
mance when implemented on FPGA. OISC
required only a half of logic elements com-
paring to RISC, however it takes 71% longer
to execute designed benchmark, showing
that OISC would need more than one data-
instruction bus to outperform RISC.

2 Introduction

Since the 70s there has been a rise of many
processor architectures that try to fulfil
specific performance and power application
constraints. One of more noticeable cases
are ARM RISC architecture being used in
mobile devices instead of the more popu-
lar and robust x86 CISC (Complex Instruc-
tion Set Computer) architecture in favour
of simplicity, cost and lower power con-
sumption [, 2]. It has been shown that in
low power applications, such as [oTs (Inter-
net of Things), OISC implementation can
be superior in power and data through-
put comparing to traditional RISC archi-
tectures [3, @]. This project proposes to
compare two novel RISC and OISC 8bit ar-
chitectures and compare their performance,
design complexity and efficiency.

2.1 Aims and Objectives

The project has three main objectives:

1. Design and build a RISC based proces-
sor.

2. Design and build an OISC based pro-
Cessor.

3. Design and perform a fair benchmark
on both processors.

2.2 Related Work

This section goes through supporting the-
ory of RISC and OISC architectures, and
their comparison.

The principal functions of general OISC
architecture should have advantage in per-
formance and power consumption while
having lower transistor count. There are
several theoretical models to implement a
processor using only a one instruction, most
important models are subtract and branch,
MOVE and half-adder architectures [5].

Some researches have proven benefits of
the subtract and branch architecture over
the RISC:

e Using an OISC SUBLEQ (SUBtract and
jump if Less or EQuial to zero) as a copro-
cessor for the MIPS-ISA processor to em-
ulate the functionality of different classes
shows desirable area/performance/power
trade-offs [4].

e Comparing an OISC SUBLEQ multicore
to a RISC achieves better performance and
lower energy for streaming data processing
[3].

Looking at the OISC MOVE type, it has
been researched since early 90s. It has been
shown that the OISC MQOVE can benefit of
a VLIW (very large instruction word) ar-
rangement, classifying it as a SIMO (single
instruction, multiple operation) or a SIMT
(single instruction, multiple transports) ar-
chitectures. The problem with all of these
arrangements is that they exhibit poor or
complex hardware utilization. OISC MOVE
has been proposed as a design framework

enabling a lower complexity, better hard-
ware utilization, and a scalable performance
[6]. In this framework a TTA is proposed
which describes how a single instruction
should transport the data. To support
theoretical benefits, a MOVE32INT TTA has
been designed [7] and proven to be superior
architecture to the RISC. Using a 1.6um
fabrication technology, RISC has achieved
20MHz clock with 20Mops/second, while
MOVE32INT implemented using SoGs (Sea of
Gates) achieved 80MHz with 320Mops/sec-
ond [§].

The TTA framework as further used
in other researches to implement ASIPs
to solve various problems. Some rele-
vant examples are RSA calculation [0]; ma-
trix inversion [I0]; Fast Fourier Transform
(FFT) [i0]; IWEP, RC4 and 3DES encryp-
tion [12]; Parallel Finite Impulse Response
(FIR) filter [13]; Low-Density Parity-Check
(LDPC) encoding [i4]; Software Defined
Radio (SDR) [15]. One of the most re-
cent researches use TTA architecture to
solve Compressive Sensing algorithms. Re-
search showed 9 times of energy efficiency to
that of FPGA implemented NIOS II pro-
cessor, and theoretical 20 time energy ef-
ficiency that of ARM Cortex-A15 [06]. In
this particular research however, used ARM
Cortex-A15 with 28nm Metal Gate CMOS
technology, compares to TTA implemented
on Altera Cyclone IV FPGA with 60nm Sil-
icon Gate CMOS technology. Both pro-
cessor implementations cannot be directly
compared.

Most of these researches show that TTA
has a greater power efficiency, a higher clock
frequency and a lower logic resource count.

These benefits come with an expense,
VLIW has bigger instruction word, there-
fore a bigger program size. TTA espe-
cially suffers from this due to the redun-
dant instructions. Some proposed solutions
are variable length instructions and instruc-
tion templates, which reduced program size
between 30% and 44% [1I7, 08]; a com-
pression based on arithmetic coding [19];

and a method to remove redundant instruc-
tions [20]. Software is another difficulty as
the compiler need to take additional steps
for the data transportation optimisations.
TTA software can be easily exploited how-
ever, to embed a software pipelining and
parallelism without need of the extra hard-
ware [21].

With the proposed MOVE framework,
hardware utilisation shown to be improved
by reducing transition activity [22], reduc-
ing interconnects shown saving 13% of en-
ergy [23] on an small scale. A novel archi-
tecture named SynZEN also showed a fur-
ther improvements by using an adaptable
processing unit and a simple control logic
4].

2.3 Project contents

Section B will go more in details behind the
motivation and project decisions based on
Relafed"Workl. Section @ explains theory
and result predictions. Section H explains
both processor design choices and how each
processor part is implemented on OISC and
RISC processor. It also includes assem-
bler design and system setup. In section B,
results will be discussed, including bench-
mark methods and future work. Summary
and conclusion of design and results can be
found in section [@. Appendix in section B in-
cludes any other information, such as both
processor instruction set.

3 Goals and Objectives

This project can be classified as a Design
and Construction type, which explores al-
ternative designs of a processor architecture
and microarchitecture. Main goals are:

1. Study and explore computer architec-
tures, SystemVerilog and the assembly
language.

2. Compare how well an OISC MOVE ar-
chitecture would perform in a low

performance microcontroller applica-
tion comparing to equivalent and most
commonly used RISC architecture.

3. View an alternative method of using
OISC MOVE in a SISO (single instruc-
tion, single operation) structure, com-
paring to more commonly implemented
TTAs VLIW architectures that are ei-
ther a SIMO or a SIMT structure.

3.1 RISC Processor

The RISC architecture will be mainly based
on MIPS architecture explained in [25], ex-
cept it this RISC processor would have 8bit
data bus, four general purpose registers and
would have multiple optimisations related
to 8bit limits. Some of minimalistic design
ideas was also from [G].

3.2 OISC Processor

OISC MOVE has many benefits from VLIW
and SIMO or SIMT design, however there is
a lack of research investigating and compar-
ing more general purpose OISC MOVE 8bit
processor with a short instruction word and
a SISO configuration. The main theory for
building OISC architecture will be based on

).

3.3 Design Criteria

In order to fairly comparison between both
architectures, a common design criteria is
set:

e Minimal instruction size
e Minimalistic design

8bit data bus width

16bit ROM address width
24bit RAM address width
16bit RAM word size

When constructing these points, time and
equipment resources were taken into the
consideration.

3.4 Benchmark

This benchmark includes different algo-
rithms that are commonly used in 8bit mi-
crocontrollers, IoT devices or similar low
power microprocessor applications.

4 Theory and Analytical
Bases

In this section differences in RISC and
OISC are explained. It includes predictions
and theory behind it.

4.1 RISC Processor

In this project, proposed RISC is mainly
based on MIPS microarchitecture [25]. Fig-
ure A1 represents a simplified diagram of
a proposed RISC processor. In this archi-
tecture, program data travels from a pro-
gram memory to the control block where
instruction is decoded. Then, control block
further decides how data is directed in the
datapath block. Such structure requires a
complicated control block and additional
data routing blocks. Depending on in-
struction, control block sets ALU, register
file, memory operations and how data flows
from one to other. Therefore, if none of the
blocks are bypassed, data can flow though
every single of these blocks, creating a long
chain of combinational logic and increas-
ing the critical path. However, this en-
ables great flexibility allowing multiple op-
erations to happen during a single step, for
example load value from register to mem-
ory, while address value is immediate offset
by another register value using the ALU. In
order to increase performance of such pro-
cessor, pipelining or multiple cores may be
used.

4.1.1 Pipelining

Tc :tpcq +trom + tregister+

trouting + tALU + tRAM + tsetup

(1)

Control Block /

clock
(o,
! adarl v v I enable
v read 1 —) —) addr v
=3 addr2 Register Data
Program) write File) Routing) data data
Memory addr read 2 Logic write read
) data RAM
write A
(immidate value
Program .
Counter branching control

Figure 4.1.1: Abstract diagram of proposed RISC structure

Equation 0 shows the maximum proces-
sor cycle period T, which depends on com-
binational logic delay of every logic block,
flip-flop time of propagation from clock to
output of synchronous sequential circuit ¢,
and flip-flop setup time Zsetyp.

tpcq +lrom + tsetup;

tpcq + tregister + tsetup7 (2)
tpcq +tary + tsetup,
tpcq +tram + tsetup

T,

cp = Max

Pipelinig separates each processor’s dat-
apath block with a flip-flop. This changes
critical path therefore reducing cycle pe-
riod. A pipelined processor cycle period T,
is represented in the equation B. Such mod-
ification could theoretically increase clock
frequency by 2 or 3 times.

Pipelining, however, introduces other de-
sign complications. Instructions that de-
pend on each other, for example an oper-
ation R = A+ B + C needs to be executed
in two steps, t = A+ Band R =t+C. Sec-
ond step depends upon previous step result.
Therefore, additional logic is required to de-
tect such dependencies and bypass datap-
ath stages, or stall pipelining. Furthermore,
breaching would also require stalling; tem-
porary saving datapath stage and restoring
it if needed when branching is concluded;

or further branch prediction logic. Such
dependency and branching issue requires a
timing hazards prevention logic which in-
creases processor complexity and required
resources.

4.1.2 Multiple cores

A multicore system is a solution to increase
processor throughput by having multiple
datapaths and control logic instances, each
running separate instructions. Cores share
other system resources such as RAM.

A multicore processor requires software
adjustments as each processor’s core would
execute separate programs. Therefore,
some synchronisation between them is
needed. A single additional core would
also double the control and datapath blocks,
substantially increasing resource require-
ments too. In addition, programs most of-
ten cannot be perfectly divided to parallel
tasks due to some result dependencies be-
tween each subtask. Therefore, doubling
processor core count would not likely result
double the performance.

4.2 OISC Processor

Figure B22 represents simplified structure
of an OISC MOVE architecture. In the
simplest case, processor has a pair of buses

v § 3

Program Brp = Acco }——(Accl

Memory

=== DATA BUS

= INSTR. BUS

branch address src A src B write address stack write address
on data push data
| zero COM
ALU RAM BLOCK
Program
Counter read stack read
and or add data pop data

INSTR. BUS ===

DATA BUS ===

=== INSTR. BUS

INSTR. BUS =--———(REG }—{ REG)

GP Registers

=== DATA BUS

Figure 4.2.1: Abstract diagram of proposed OISC' structure

data and instruction. An instruction bus
has a source and destination address that
connects two parts of processor via a data
bus. This mechanism allows for the data
to flow around processor. Computation
is accomplished by setting accumulators at
destination addresses and taking computed
values from the source address. Other ac-
tions can be performed by destination node,
for instance check value for branching or
sending data to memory.

4.2.1 OISC Pipelining

The maximum cycle period of such proces-
sor microarchitecture can be found in Equa-
tion B.

tregistera
tALy,
trRAM

tor, = max

Tcp = max <t€n + tbuf’) +
tpcql

+ tpch + ZSCL + tsetup

Where t., is period to check if instruc-
tion bus address match, ¢,y is period for
source buffer to output value into the data
bus, t,.q2 is propagation period for program

memory, tcy represents the longest propa-
gation period though a logic block, tsetyp is
the setup time inside logic block. t,.,1 and
tpeq2 are clock to output delay for the se-
quential logic connecting source buffer and
memory connecting instruction bus, respec-
tively.

4.3 Predictions

Comparing RISC and OISC, the maximum
processor cycle period of OISC is almost
equivalent to the pipelined RISC, with ad-
dition of enable, buffer and additional ROM
delays: mazx (ten + tous, tpegl)-

Further more, due to the nature of pro-
cessor no additional timing hazard preven-
tion logic is needed, making this much sim-
pler design. OISC t¢p, pipelining can be also
introduced to components that has high
propagation delay. For instance, multipli-
cation in an ALU could be pipelined into
two stages. When setting ALU accumula-
tors, software could be designed to retrieve
multiplied result only after two cycles. This
can further reduced required resources.

4.3.1 Execution time

OISC requires taking extra steps to perform
basic functions. ALU, branch or memory

operations needs accumulator values to be
set first to compute an output. A single
data-instruction bus OISC therefore is ex-
pected to be slower executing the same task

as RISC.

4.3.2 Instruction Space

RISC has compact instructions, as a single
instruction can carry a small opcode, reg-
ister addresses and optionality a multiple
word immediate value. OISC has a bigger
instruction overhead as it can only carry a
source and destination address, meaning it
can operate on only one register or immedi-
ate value in a single instruction. Therefore,
it is expected the OISC will require more
instruction space to perform the same func-

tion as RISC.

4.3.3 Resources

OISC does not have a control block which
contains how data travel in datapath. It
also does not have multi-address register file
and further routing logic within a datapath.
This indicates that the OISC should require
less logic elements to implement. This also
should result in lower power consumption.

5 Technical Method

This section describes methods and design
choices used to construct two processors.

5.1 Machine Code
5.1.1 RISC Machine Code

As the aim of instruction size to be as min-
imal as possible, RISC instruction decided
to be 8bits with optional additional imme-
diate value from 1 to 3 bytes. Immediate
values are explained in section h72.

Decision was made to have instruction
compose of operation code two operands
- source/destination and source, which is
similar to x86 architecture rather than
MIPS. Three possible combinations of reg-
ister address sizes are possible in such case
from one to three bits. Two was selected as
it allow having four general purpose regis-
ters which is sufficient for most applications,
and allow four bits for operation code - al-
lowing up to 16 instructions.

Due to small amount of possible opera-
tion codes and not all instructions requiring
two operands (for example JUMP instruction
may not need any operands or could use
one operand to have address offset), other
two type instructions are added to the de-
sign - with one and zero operands. See fig-
ure b1, This enabled processor to have
45 different instructions while maintaining
minimal instruction size. Final design has:

e 8 2-operand instructions

e 32 1l-operand instructions
e 5 (-operand instructions

Full list of RISC instructions are listed in
table B0 in Appendix section.

2 operands: (0|1 2([3 4 5 6 7
e — N N

op. code dst. SIC.

1 operand: 0|12 3 456 7

——— N
op. code dst. op. c.

0 operands: [0|[1 213 4 56 7

vV
operation code

Figure 5.1.1: RISC instructions compo-
sition. Number inside box represents bit in-
dex. Destination (dst.) bits represents of
source and destination register address.

5.1.2 OISC Machine Code

As OISC requires only a single instruction,
composition of instruction mainly requires
two parts - source and destination. To al-
low higher instruction flexibility a immedi-
ate bit has been added to replace source
address by immediate value. Composition
of finalised machine code is shown in figure

BT

0 1234567891011 12
~—— " ~ .

imm. destination source

Figure 5.1.2: OISC instruction composi-
tion. Number inside box represents bit in-
dex.

Decision was made to have source ad-
dress to be eight bits to allow it be re-
placed with immediate value. Destination
address was chosen to be as minimal as pos-
sible, leaving only four bits or 16 possible
destinations. Final design has 15 destina-
tion and 41 source addresses. This is not
the most space efficient design as 41 source
addresses would require only six bits for
address, wasting two bits every time non-
immediate source is used.

Full list of OISC sources and destinations
are listed in table B2 in [Appendix section.

5.2 Data flow
5.2.1 RISC Datapath

(selr

cdi (Control-Datapath Interface)

a3 rw_en a2 al selb alu_cen stackop alu_op alu_comp selo)
mclk ¢ b
rst ¢——> SO_MEMH
Mem
Check clk wr_en eq gt zero
Logic 4 ol 1 2
2 8 srcA 8 J
kb rd_addrl rd_datal (i -
2
L 7:0 e rd_addr2 o data2 8 I> 16 result
r ata
Yalu_rlo | 8 2 - M SB_REG .
- .z | Wr_addr 0x00 SB™ cout
T X -
a Register — N
, 15:8 | N N File 0x01 = _ —
“alu_rhit RO R 00 4x8bit e
- en rst— - L
11
| — . 7:0 o1 wr_data
v 158 10 16
= R1 ™ M rst = 7.0 —tv3> mem_wr
interrupt ¢ n rst—@ MUX1 $ i
com_rd ¢ 15, mclk |
mem_rd : e 24
v 158 mem_addr
R4 ¥
N rstF—
&7:0 &7:0 &7:0
imm 1
com_rd regl ST_SKIPﬂ‘ sp_addr 0
v MUX6

Figure 5.2.1: Digital diagram of RISC datapath

Figure 6221 above represents partial RISC datapath. This diagram can be extends to Program counter, Stack pointer and Immediate

Override logics are represented in figures 541, 6231 and b7 respectively. CDI (Control-Data Interface) is HDL concept that connects
datapath and control unit. Immediate value to datapath is provided by IMO block described in section b=71l.
Data to register file is selected and saved with MUX(0. This data is delayed 1 cycle with R2 to match timing that of data is taken from
memory. If LWLO or LWHI is executed, MUX]I select high or low byte from memory to read. To compensate for timing as value written

to register file is delayed by 1 cycle, register file has internal logic that outputs wr_data to rd_datal or/and rd_data?2 immediately if
wr_en is high and rd_addr1 or/and rd_addr2 matches wr_addr.

MUX2 allows override ALU source B, R3
and MUXS3 enables control unit to enable
ALU carry in allowing multi-byte number
addition/subtraction. This function is not
fully implemented yet. MUX/ and MUX5
allows to send data to COM block with COM
instruction, if other instruction performed
then 0200 byte for COM address and data
is sent, indicating no action. Data is stored
in memory only with SWLO instruction writ-
ing to high byte whatever is stored in R4
buffer. This buffer can be written to using
SWHI instruction. MUX6 selects memory
address value from imm or stack pointer.

5.2.2 OISC Datapath

OISC datapath only consists of instruction
and data buses, and small circuit that con-
nect them to logic blocks that process the
data. These logic blocks can represent ALU
operation combinational logic, or any other
part of a processor.

Figure b2272 represents common destina-
tion circuit. It checks if particular block
destination matches one on instruction bus,
then enables latch and also sets flag to fur-
ther logic.

4
dst bus en

dst address

EQ1 8.
data bus ¢p———————x3giin

reset ¢

Figure 5.2.2: OISC processor data bus to
destination connection logic

Latch

out
rst

' | arcH1

Similarly Figure B223 represents source
circuit connecting output of logic block. As
logic block may only involve combinational
logic a register is placed at the output of it.
Buffer is used to connect data in register to
data bus. This ensures that only one bus
driver is present, ensuring do data collision.

src bus
src address

data

bus
BUF1

| REG1
reset

Figure 5.2.3: OISC processor data bus to
source connection logic

The general timing is designed so that
the information at the source is immedi-
ately ready in data bus at rise of the pro-
cessor clock. The source is connected to
the destination connection where combina-
tional logic is present.

5.2.3 OISC Datapath Implementa-
tion Problems

The complete implementation using latches
for destination was not successful. Latches
did not operate correctly when synthesised
on FPGA. This issue might be caused by
some timing problem between some source
and destination logic combination. Exact
cause was not resolved.

As a quick solution, latches at destina-
tion has been replaced with a clocked reg-
ister that is triggered at opposite to source
register clock edge (negative). This resolved
this issue, however it effectively reduce pe-
riod that data can propagate though logic
blocks between source and destination by
two.

5.3 Stack

This section describes RISC and OISC ded-
icated logic for stack pointer control. Stack
pointer starts from the highest memory ad-
dress value and 'stacks' to lower memory
address values. Both designs were simpli-
fied to only operate on two byte addresses,
meaning that stack pointer has a constant
OxFF value at least significant byte.

10

rst

A

pc_halted
mclk

ST_ADD

0X000] =l

K

'
-

OXFFFF

inital stack address
OxFFFF

Y

Figure 5.3.1: Digital diagram of RISC stack pointer logic

5.3.1 RISC Stack

RISC processor implements the stack
pointer that is used in PUSH, POP, CALL and
RET instructions. The stack pointer’s initial
address starts at the highest memory ad-
dress (OxFFFF) and subtracts 1 when data
is put to stack. Figure b23 represents the
logic diagram for stack pointer. Note that
the stack is only 16bit in size and the most
significant byte is set to 0xFF. The stack
pointer circuit also supports pc_halted sig-
nal from program counter to prevent the
stack pointer from being added by 1 twice
during RET instruction.

One of the problems with the current
stack pointer implementation is 8bit data
stored in 16bit memory address, wasting a
byte. This can be avoided by adding a high
byte register, however then it would cause
problems when a 16bit program pointer is
stored with CALL instruction. This can still
be improved with a more complex circuit, or
by using memory cache with 8bit data in-
put. However with current implementation
this does not affect processor comparison, it
only increases stack size in memory.

5.3.2 OISC Stack

Stack pointer in OISC is very similar to
RISC. In basic operation, when reset, push
or pop flags are set, it changes the state

11

of stack pointer by adding or subtracting
its value by one, or resetting it to default.
Logic diagram is shown in Figure b=32

Logic diagram of stack control unique to
OISC processor is shown in Figure bh=373.
Push and pop flags are taken from source
and destination logic. A cached value of
last stored value is kept, so that it would
be immediately available on source request.
Pop flag is delayed by one cycle which en-
sures that once popped, lower stack value is
written to cache during next cycle.

5.4 Program Counters

In this subsection, program counter and
their differences will be described.

5.4.1 RISC Program Counter

Figure b2 represents the digital diagram
for program counter. There are a few key
features about this design: it can take val-
ues from memory for RET instruction; im-
mediate value (PC_IMM2 is shifted by 1
byte to allow BEQ, BGT, BGE instructions as
first immediate byte used as ALU source
B); can jump to interrupt address; produces
pc__halted signal when memory is read (RET
instruction takes 2 cycles, because cycle one
fetches the address from stack and second
cycle fetches the instruction from the in-
struction memory).

5.4.2 OISC Program Counter

OISC program counter is much simpler than
RISC, as it does not have variable length
instruction, delay flags instructions, or logic
for selecting branch source address.

BRZ

address EQ1

branch
flag

AND1
EQ2

- 15:8
Dest. Logic
BR1

0x0000

data bus —@—
instr. bus =

clk ¢
0x0001

VREG1
rst

ADDERI1
0x0000

Figure 5.4.2: Digital diagram of OISC
program counter

Looking at Figure b2 bottom, the ba-
sic operation is to just add one to previ-
ous program counter with ADDER1 and

REGI, reset it to zero at reset with MUX2.
Two destination logic blocks are used as ac-
cumulators to store branch address. Once
instruction with BRZ destination is exe-
cuted, FQ2 check if data bus value is zero,
which enables MUX1 and overrides pro-
gram counter to address stored in BRO and
BR1 accumulators. Unlike in RISC however,
it requires three instructions to set new ad-
dress and jump. Similarly, CALL and RET
requires five and three instructions respec-
tively. These RISC equivalent instructions
are show in Listing [I.

rst ¢ L === pop flag
N --- push flag
0X0001 =i |
clk
OXFFFF it O 3
N

inital stack address
OxFFFF

‘ =

—1en

stack
l) pointer

Figure 5.3.2: Digital diagram of OISC' stack pointer logic

pop flag 2 ==~

clk
? instr. bus
data bus =3/ Dest. Logic Syk :
instr. bus STACK Caacf\e
en Src. Logic data bus
STACK
RAM data read ¢ Ik
c
N/
pop pop flag 2
push flag --- pop flag === flag -
delay

Figure 5.3.3: Digital diagram of OISC' stack control logic

12

=

cdi.isize cdi.pcop [cdi.intr ctl melk
\ pc_halted
PC_IMM B \
PC_IMM2 interrupt
? INTR_RE
PC_MEM
2 3
EN ff
L w1 ¢-0 pchf
I~
rem_rd === 570 PC_M% o N
i PC_IMM |pcn - 0
&2l PC_IMM2 rsth—
imm PC_NONE y
N/ |
PCR pch INtrr == s s—t
" intre === sl 7
= _; 0X0000 ==ty 77

Figure 5.4.1: Digital diagram of RISC program counter

Listing 1: OISC assembly code emulating

scribed in table B2l

RISC JUMP, CALL and RET instructions. Name | Description

Ymacro JUMP 1 ADD | Arithmetic addition (inc. carry)
BR1 %1 @1 SUB | Arithmetic subtraction (inc.
BRO %1 @O carry)
BRZ 0x00 AND | Bitwise AND

Y endmacro OR | Bitwise OR

XOR | Bitwise XOR

%macro CALL 1 SLL | Shift left logical
BR1 %1 @1 SRL | Shift right logical
BRO %1 @O ROL | Shifted carry from previous SLL
STACK ‘%return @1 ROR | Shifted carry from previous SRL
STACK Y%return @O MUL | Arithmetic multiplication
BRZ 0x00 DIV | Arithmetic division
hhreturn: MOD | Arithmetic modulo

Y% endmacro

Y%macro RET O
BRO STACK
BR1 STACK
BRZ 0x00

%endmacro

5.5 Arithmetic Logic Unit

This section will discuss ALU implementa-
tions of both processors. For fair compari-
son between OISC and RISC, ALU in both

system will have the same capabilities de-

Table 5.5.1: Supported ALU commands
for both processors

5.5.1 OISC ALU

Due to the structure of OISC processor,
ALU source A and B are two latches that
are written into when ALUO or ALU1 des-
tination address is present. ALU sources
are connected with every ALU operator and
performed in single clock cycle. This value
is stored in register so that it would imme-
diately available in a next clock cycle as a
source data. Figure Bh represents logic

13

diagram of ALU with only addition and
multiplication operators present. Note that
output of E(Q3 is connected to enable of
REGS3, enabling output of carry to be only
read after ADD source is requested. This pre-
vious source memory is also used for SUB,
ROL and ROR operations. This allows pro-
cessor to perform other operations such as
store or load values, before accessing carry
bit, or carried byte for ROL and ROR opera-
tions.

5.5.2 RISC ALU

RISC processor has very similar structure to
OISC with two exceptions. Inputs to ALU
comes from logic router that decided how
to route data in datapath. Output buffers
are replaced by one multiplexer that selects
single output from all ALU operations. An-
other point is that RISC ALU output is
16bit, higher byte saved in "ALU high byte
register" for MUL, MOD, ROL and ROR opera-
tions. This register is accessible with GETAH
instruction.

data bus

5.6 Program Memory

This section describes how instruction
memory (ROM) is implemented for both
Processors.

5.6.1 RISC Program Memory

In order to allow dynamic instruction size
from one to four bytes a special memory
arrangement is made. A system was re-
quired to access word (8bits) from memory
and next three words. To achieve this four
ROM blocks been utilised, each containing
one fourth of sliced original data. Input ad-
dress is offset by adders ADDFER1-3 and
further divided by four by removing two
least significant bits at addr0-3. Before
concatenating output of each ROM block
into final four bytes, ROM outputs q0-3 are
rearranged depending on ar signal. Note
that MUX1-/ each input is different, this
may be better visualised with Verilog code
in listing B.

destination bus

source bus

MUL1
ALUO

en

LATCH1

| {]

ALU1
en

LATCH2

_| *Source A

"
*Source B

ADDER1

AbD =
<V ?
sum EQ3 !
BUF3
ADDC
| rEG2 . =
N4 0:0
EQ4
carry 71
en BUF4
|_ REG3

Figure 5.5.1: Digital diagram of OISC partial ALU logic

14

Listing 2: RISC sliced ROM memory mul-
tiplexzer arrangement Verilog code

case (ar)
2’b00: data={q3,92,q91,q0};
2°b01: data={q0,93,92,q91};
2’b10: data={ql1,q0,q93,q92};
2’b11: data={q2,q91,90,q3};
endcase

5.6.2 OISC Program Memory

OISC instructions are fixed 13 bits, which
causes different problems to RISC sliced
memory - non-standard memory word size.
To implement ROM in FPGA, Altera Cy-
clone IV M9K memory configurable blocks
were used. Each blocks as 9kB of mem-
ory each allowing 1024x9bit configuration.
Combining three of such blocks together
yields 27bits if readable data in single clock
cycle. To store instruction code to such con-
figuration, pairs of instruction machine code
sliced into three parts plus one bit for par-
ity check, see figure B 6. Circuit extract-
ing each instruction is fairly simple, shown
in figure B63.

5.7 Instruction decoding

This section describes RISC and OISC dif-
ferences between instruction decoding and
immediate value handling.

mclk ¢

5.7.1 RISC IMO

Already described in previous section b8,
instruction from memory comes as 4 bytes.
Least significant byte is sent to control
block, other three bytes are sent to imme-
diate override block (IMO) shown in fig-
ure b7 1. These three bytes are labelled
as immr.

IMO block is a solution to change imme-
diate value which enabled dynamically cal-
culated memory pointers, branches depen-
dant on register value or any other func-
tion that needs instruction immediate value
been replaced by calculated register value.
IMO is controlled by control block and
cdi.imoctl signal, which is changed by CIO,
CI1 and CI2 instructions. When signal
is Oh, this block is transparent connecting
immr directly to imm. When any of CI in-
structions executed, one of IMO register is
overridden by regl value from register file.
In order to override two or three bytes of
immediate, CI instructions need to be exe-
cuted in order. Only for one next instruc-
tion after last CI will have immediate bytes
changed depending on what are values in
IMO registers.

This circuit has two disadvantages:

1. Overriding immediate bytes takes one
or more clock cycles,

2. At override, immr bytes are ignored

data
32 f)

31:24{

23:16{ 15:8{ 7:0{
MUX1 MUX2

MUX3 MUX4

1:0

/ __/ \ 1/ _/ \
/01 10 11 o0\ /10 11 00 o\ /11 00 01 10\ 00 01 10 11

ROM3
1024x8bit

|

12
addressO—N—[

q3

addr2
11:2

ROM2
1024x8bit

ADDER1

|

~

addrl
11:2

ROM1
1024x8bit

ADDER2

|

ROMO
1024x8bit

'\fk g

addro
11:2
ADDER3

Figure 5.6.1:

Digital diagram of RISC' sliced ROM memory logic

15

ROMO
7\

ROM1
7\

ROM?2
7\

N

00 01 02 03 04 05 06 07 08 09 10 11 12

g

N

13 14 15 16 17 18 19 20 21 22 23 24 25 26

~
InstrA

~
InstrB

Figure 5.6.2: OISC three memory words composition. Number inside box represents

bit index.

mclk ¢
1:0

11
address @=—S¢—

N4
ROMO
1024x9bit

o
~10:1

instrA

~
ROM1
1024x9bit

o
~10:1

26:14
LN

€

13:1 i
N instrB

~
ROM2
1024x9bit

o
~10:1

1:0
Ps——--- parity check

Figure 5.6.3: Digital diagram

therefore they are wasting instruction
memory space.

Second point can be resolved by designing
a circuit that would subtract the amount of
overridden IMO bytes from pc_off signal
(program counter offset that is dependant
on i-size value) at the program counter, thus
effectively saving instruction memory space.
This solution however would introduce a
complication with the assembler as addi-
tional checks would need to be done during
compiling to check if IMO instruction are
used.

5.7.2 OISC Instruction decoding

OISC immediate value is set in instruction
decoder shown in figure B=72. Decoder op-
eration is simple - instruction machine code
is split into three parts as described in b2
If instruction source address is 00h, con-
nect data bus with constant 0 via MUXZ.
If immediate bit is 1, set source address to
00h (to make sure no other buffer source

of OISC instruction ROM logic

connects to data bus), and connect instruc-

tion source address (immediate value) to
databus via MUX2 and BUF'1.

5.8 Assembly

There are two steps between assembly code
and its execution on a processor. First it
needs to be converted to binary machine
code. Secondly, binary data needs to be
sliced to different parts described in sec-
tion B@. These slices also need to be con-
verted into appropriate formats, as simula-
tion, HDL synthesis and flashing memory
directly to FPGA memory, all use different
formats.

A universal assembler was implemented
with python for both processors. Flowchart
in figure B0 represents general structure
of assembler process. It splits assembly file
into three parts - sections, definitions and
macros. Definitions are keywords mapped
to values which are saved in global label
dictionary. Macros are a chunk of assem-
bly code and is used as templates.

16

N\

A~
parity

cdi.imoctl i 1
= o
00 =i Fo1
. 24
immr @—¢ ANDI [AND2 | AND3
A4 . 7:0
01 —] = 5 | v 0 7:0,
EQ2 gag] MO0 1 N
en rstp— /MUX1
| .
9 imm
B A4 . 15:8 \W _
o] _ - . 0 15:8,
EQ3 g /MO1 y N
en rst—@ Mux2
1
\V4 23:16 N
u _ - S 0] 23:16
EQ4 IMO2 1
KN
“len rst MUX3

rst

Figure 5.7.1: Digital diagram of RISC immediate override system

13:13 immediate flag
13
‘ *] 12:8
Instr. Jag) Dest. Addr.
7:0
e e [0
8) Source Addr.
0x00 A\ y
MUX1
0X00 m=
8 Data Bus
0X00 =——l

Figure 5.7.2: Digital diagram of OISC instruction decoder

17

There are only two sections implemented
in assembler - .text and .data. Sec-
tion .text contains all machine instructions
which will be stored in program ROM mem-
ory. Section .data is used for global and
static data, and it will be written into RAM
memory. This section contains values such
as strings and structures uninitialised data
as labels which data is RAM memory loca-
tion.

Section .text is processed line by line.
Each has label, instruction name and in-
struction arguments. Label however is op-
tional, if line contains it, label is saved to
global label dictionary with program ad-
dress. If line instruction name is a macro,
line is replaces by macro and instruction
arguments are used as macro arguments.
Otherwise instruction name is decoded and
stored in instruction list with original argu-
ments.

After all instruction lines are completed,
each stored instruction arguments are pro-
cessed, labels are replaced with binary val-
ues, any other processing is done such as
addition by constant, byte selection, etc.
Completed list is then saved as raw binary.
Similarly, .data section labels also replaced
and it is saved as binary data.

Assembley File

vy

macros

text .data
section section

VAR

label
definitions

\W

sections

decoded
instruction

S

Global label
Dictionary

labels to
values

labels to
values

Memory
Binary

Machine Code
Binary

Figure 5.8.1: Flow chart of assember
converting assembly code into machine code
and memory binary.

5.9 System setup

This section will describe how system is
setup.

Processors are implemented on Terasic
DEO-Nano board that use Altera Cyclone
IV, EP4CE22P17C6 FPGA, which is man-
ufactured using 60nm fabrication technol-
ogy. FPGA has embedded memory struc-
ture consisting of columns of M9K mem-
ory blocks mentioned in Subsection BBA.
These memory structures were used to im-
plement processors RAM and ROM memo-
ries. Board also has 32MB SDRAM chip,
which initially was intended to be used.
This set design criteria to have 24bit ad-
dress space. However, MIK memory was
used instead for simplicity.

FPGA has embedded phase-locked loop
(PLL) stucture that is used to change

18

50MHz input that is generated by on-board
crystal to other frequencies.

DEO-Nano board as integrated JTAG
port that is used to upload synthesised
code and additional debugging tools. Quar-
tus has "Signal Tap Logic Analyzer" tools
that allow setup probes and sources within
FPGA logic and control them via JTAG.
"In-System Memory Content Editor" tool
allows read and modify MK memory which
enabled quick machine code uploading to
FPGA without need to resynthesise HDL
code. This also allow reading RAM content
to debug program.

All Quartus functions can be imple-
mented via TCL script. This allowed con-
structing Makefile to allow quick build func-
tions. Quatus signal and memory tool func-
tions were used to write a small program
with Python and Curses library to read
and change internal processor state which
allowed easy debugging while writing pro-
grams.

6 Results and Analysis

6.1 FPGA logic component
composition

This subsection looks at test and its results
to find how much FPGA logic components
each processor takes and what is composi-
tion of each part.

Test was performed with Quartus syn-
thesis tool and viewing flow summary re-
port. This report includes synthesised de-
sign metrics including total logic elements,
registers, memory bits and other FPGA re-
sources. Test will only look at logic ele-
ments and registers. Total number of logic
elements was found out by synthesising
full processors, then commenting relevant
parts of code, re-synthesising and view-
ing changes in total logic elements. Such
method may not be the most accurate, be-
cause during HDL synthesis circuit is opti-
mised an unused connections removed. This

means that more logic may be not synthe-
sised than intended.

There are four parts of each processor
that will be tested:

1. Common - processor auxiliary logic
that is used by both processors. It
includes communication block with
UART, RAM and PLL (Phase-Locked

Loop, for master clock generation).

2. ALU - as described in section b3, both
processors have slightly different imple-
mentation of ALU.

3. Memory - processors memory man-
agement, including stack.

4. Other - reminding logic of processor
that was not analysed.

3500 Processors FPGA logic element composition

3000 r

2500 r

n
o
o
o

Logic elements
@
o
o

1000

500 r

olIsc

RISC

Figure 6.1.1: Bar graph of FPGA logic
components taken by each processor.

Results of a test are shown in figures B
and B172. Common logic uses 293 logic el-
ements and 170 registers. OISC uses 1705
logic elements, while RISC uses 3218. Ex-
cluding common logic, OISC takes 48.3% of
RISC’s logic elements.

19

gggcessors FPGA register usage composition

I COMMON
700 I ALY 1
[IMEMORY
600 I OTHER | 4
500
12
o
» 400
(@]
(0]
o

w
o
o

OIsC

RISC

Figure 6.1.2: Bar graph of FPGA register
resources taken by each processor.

OISC uses 726 logic elements, while RISC
uses 407. Excluding common logic, OISC
uses 78.4% more registers than RISC.

Looking at composition, OISC ALU
takes 30.2% more logic gates. Looking at
figure 612, high number of OISC ALU reg-
isters can be observed which concludes, that
higher resource usage is OISC ALU code in-
clude buffer logic.

Memory logic elements composition of
OISC is only 34.4% of RISC’s and 7% lower
for register resources, comparing to RISC.
This indicate that by removing memory
logic for RISC, synthesis tool may removed
also other parts of processor, possibly part
of control block because it mostly contains
combinational logic.

Other logic includes instruction decoding
with ROM, register file, program counter.
RISC exclusively has control block. Note
that OISC uses only three ROM memory
blocks whereas RISC uses four as explained
in section b8, however this should make a
minimal difference as M9K memory blocks
are not included in FPGA logic element or
register count. Comparing both processors,
OISC has only 37% of other logic compo-
nents to RISC, however it has 2.28 times
more registers. This shows a logic compo-
nent - register trade-off. OISC buffer and
common registers logic that connects bus
require many more registers whereas RISC
uses combination logic in control block in

order to control same data in datapath.

Much higher logic components in RISC
can be also explained more complicated
register file, ROM memory logic and pro-
gram counter. All of these components has
some additional logic for timing correction
or additional functionality required by these
blocks integration into datapath.

6.2 Power analysis

Power analysis was performed to anal-
yse power consumption of both processors.
This has been accomplished by connect-
ing FPGA board to a laboratory power
supply with 4V to an external power in-
put. A shunt resistor of was used of 1.02052
was connected in series to calculate cur-
rent. Supply voltage and voltage across
shut resistor were measured using oscillo-
scope with data sampling feature. Three
tests have been performed with different
processor configurations. Between each
tests a period of about 5 minutes was given
for FPGA to reach steady state.

Processor power consumtion

361 1
3605
360 1

3595 ¢

Power (mW

359 1

358.5
RISC

OISC

None

Figure 6.2.1: Measured power of proces-
sors when implemented on FPGA, running
16bit multiplication function in loop. None
indicates auxiliary-only power.

First configuration is "None" or auxiliary-
only power, which includes whole FPGA
board, voltage regulators, and synthesised
logic on FPGA required to support a pro-
cessor (such as PLL, UART, Input/Output
control, RAM). RISC and OISC indicate
both processor implementations on FPGA,

20

each running multiplication program in a
loop. Figure B2 represents power results.
RISC and OISC bars in the graph indicate
auxiliary power plus processor power, which
means that the processor itself takes rel-
atively small amount comparing to auxil-
iary power, about 0.5%. Result shows that
OISC require 0.4%, which including noise is
almost insignificant result.

During this test clock frequency of 1MHz
was used. Due to equipment unavailability,
further tests were not carried out to inves-
tigate power consumption at different fre-
quencies. Due to constant noise, running at
higher frequency may result in significant
difference between processors.

6.2.1 Activity Factor

An activity factor could be also found us-
ing Equation @ where P is power, Cyyq in-
dicate total gate capacitance and Vpp indi-
cate voltage supplied to the transistors.

B P
Ctotal : f : VDQD

As Cioiq and Vpp are constants, measuring
power at different frequencies allows finding
activity factor. This value could be used to
compare how much of a processor circuit is
active. Further design improvements could
be used to optimise power [I1, I5, 22, 23].

=y ==

«

(4)

6.3 Benchmark Programs

A number of and programs have been writ-
ten to test both processors. These involve
simple functions that could be commonly
used in 8bit processors:

e Printing: Sends data to UART. It in-
cludes waiting until UART is available
for transmission.

e Printing unsinged integer: Uses
binary-coded decimal algorithm to
convert 8 or 16bit binary value to
decimal value and print it.

e 16bit multiplication: Uses simple ma-
trix multiplication.

e 16bit division: Uses Long division algo-
rithm to divide two 16bit numbers, re-
sult including a reminder.

e 16bit modulo: Uses '"Russian Peasant
Multiplication" algorithm to perform
Modulo operation with two 16bit num-
bers.

e Prime number calculator: Uses Sieve
of Atkins algorithm [26] to calculate
primer number, operates on 16bit num-
bers and utilise 16bit multiplication
and modulo functions.

6.3.1 Instruction composition

This test is performed to investigate in-
struction composition of each function to
see how similar it is between RISC and
OISC processors.

¢ MOVE - All instructions that move data
around internal processor registers.

e ALU - Instructions that are used to per-
form ALU operation.

e MEMORY - Instructions that are re-
quired to send/retrieve data from sys-
tem memory, except stack.

e STACK - Instructions that push/pop
data from memory stack.

e COM - Instruction(s) that send/receive
data from communication block.

e BRANCH - Instructions that are used
to make program branching.

e OTHER - Any other instructions.

21

Each function was ran on simulated pro-
cessor, program counter and instruction
been recorded into file at every cycle.
File recording was done with SytemVerilog
test bench, it started recording when pro-
gram counter matched .start location and
stopped when it matched .done location.
Code shown in Listing B enabled both lo-
cation to be static, not depending on test
function executed.

Listing 3: Assembly frame for executring
tests

setup:

JUMP .start
.done:

JUMP .done
.start:

; Setup values
; Call function
JUMP .done

Name Instructions
MOVE MOVE, CPYO, CPY1, CPY2,
CpPY3, CIO, CI1, CI2
ALU ADD, ADDI, SUB, SUBI,
AND, ANDI, OR, ORI,
X0R, XORI, DIV, MUL,
ADDC, SUBC, INC, DEC,
SLL, SRL, SRA, GETAH
MEMORY | LWLO, LWHI, SWLO, SWHI
STACK PUSH, POP
COM COM
BRANCH | BEQ, BGT, BGE, BZ,
JUMP, CALL, RET
Table 6.3.1: RISC processor instruction
groups used in instruction composition test.
Name Destination
MOVE REGO, REG1
ALU ALUO, ALU1
MEMORY | MEMO, MEM1, MEM2,
MEMLO, MEMHI
STACK STACK
COM COMA, COMD
BRANCH | BRO, BR1, BRZ
Table 6.3.2: OISC processor instruction

desination groups used in instruction com-

position test

Name Instructions
MOVE ALUO, ALU1, REGO,
REG1, PCO, PC1, NULL,
IMMEDIATE
ALU ADD, ADDC, SUB, SUBC,
AND, OR, XOR, SLL, SRL,
EQ, GT, GE, NE, LT, LE,
MULLO, MULHI, DIV, MOD,
ADC, SBC, ROL, ROR
MEMORY | MEMO, MEM1, MEM2,
MEMLO, MEMHI
STACK STACK
COM COMA, COMD
BRANCH | BRO, BR1
Table 6.3.3: OISC processor instruction
source groups used in instruction composi-
tion test

Each function recorded file then was fur-
ther analysed and each instruction was
grouped. Recorded program counter was
used to find effective program space. This
has been achieved by calculating unique in-
stances of program counter and summing
up instruction size for each of them. In
RISC, dynamic instruction size has been
taken into account.

From results in Figure 6231 few key dif-
ferences can be seen. Across every test,
OISC has much more BRANCH destina-
tion and MOVE source groups. BRANCH
group can be explained by emulated CALL,
RET and JUMP instruction explained in sec-
tion b4, High number of MOVE source
group instructions may be explained by us-
ing immediate values as separate source,
where RISC uses instruction that integrate
with immediate in instructions such as
ADDI. In most cases ALU group instructions
are also higher than for OISC comparing
to RISC. This shows lower OISC ALU effi-
ciency, mostly due to need to move data to
septate accumulators.

22

16bit Modulo 0001h % FFFFh

16bit Modulo FFFFh % 0001h

20 — : : 600 : : :
g 157 400 + I
§ 10
g 5 L 200 I T
O 1 1 O 1 1
60 16bit Modulo FFFFh % FFFFh 16bit Multiplication
: : : : : : : o0 . : : : —
§ w0l 10 b
0 I I 0 I . I I
Print Character Print 16bit unsigned int FFFFh
15 T - T T T T T T 300 T T T T T —
[2]
s10r 200 1
©
=
£ 57 100 .
£
o Lo | 0
20 Print 8bit unsigned int 00h 80 Print 8bit unsigned int FFh
B 40 -
£10}
2 20 + 1

N W ol ot o o & N© A & ot o o <&
\© N N\?/N\O 6\\” o %?\P§ Of\‘(\ S N N\?/\\\O 6\?\ ¢ & ?\P‘& O(V\
I RISC
[OISC Destination
[C—"""10ISC Source

Figure 6.3.1: Graph of instruction composition for every benchmark program.

6.3.2 Performance

This subsection investigates time and clock
cycles to run benchmark programs. Simula-
tion was sued to find a number of cycles re-
quired to execute each function. Note that
prime number calculator was not simulated
due to too complex dynamic nature of pro-
gram.

Print 16bit decimal and modulo opera-
tion were executed with different arguments
to show the worst and the best case scenar-
ios as algorithms length depend on inputs.
This is not the case for 16bit multiplication
as this it has no branching.

Results are shown in Figure 6232. In
most cases, OISC requires around 55-67%

more instruction, with some exceptions.
These results can be better explained in fol-
lowing subsection B=3.

23

Processor cycles per function

120 : :
1076
1000 I RISC | |
U, I O'SC
2 800]
) 618
= 600 534
o] L 361
z 400 205 °
Z 200 |]
5999 5, 49 5255
0
\ N R
\QQQQY;\((?Q(/ olcﬁgg\‘\olo ??:X??(i \ AS
ed\‘(\@ o ()’5’? Q?Q? QQQ\“ \“‘)\\\Q
X A ©) S
o€ o (o (o

Figure 6.3.2: Simulated results of cycles
that taken to perform function.

Another set of benchmarks have been
performed and on both processors once they
been implemented on FPGA. Time taken
for perform each set has been recorded.
This have been done via UART connection,
a single character was sent to indicate start
and stop of benchmark. In order to void
slight timing variation due low baud rate
of UART, each benchmark was performed
many iterations. Figure 62373 represents re-
sults.

7(;I'ime taken for each benchmark

I RISC
60 r I OIsC |
50 |
G40 |
()
E 30 |
20 |
10 |
0
)
((\\06(6 \)\\\Q\\‘ QQ\Q‘(\ ??Q?(\ %C)
) \“ \>\0 6\)\0
ot W

Figure 6.3.3: Time taken perform each
benchmark on FPGA at 1MHz clock.

Results indicate that on average OISC
takes about 71% longer to execute same
benchmark. This is close to results found
with simulation. Prime number calculator
have taken 3.26 times longer.

Benchmarks include:

e Prime Numbers: Calculate every
prime number between 5 to 65536.

e Multipy: 16bit multiplication iterated
65536 times.

e Modulo 0010h: 16bit 0010h modulo
that operated on every number be-
tween 0 and 65536.

e Modulo FFFFh: 16bit FFFFh modulo
that operated on every number be-
tween 0 and 65536.

e BDC: Encoded 16bit binary to ASCII

decimal number without printing.

6.3.3 Program space

Data collected from previous instruction
composition results were also used to find
effective program size. Effective program
size only includes instruction that been ex-
ecuted depending on argument, meaning
that it does not fully represent complete
function. A specific argument might cause
branching and skipping some function code
which would not be added to effective pro-
gram size. In this test, the main objective
is to look difference in instruction size re-
quired to execute the same function, there-
fore not representing full program size is not
relevant.

24

20Bo%nchmark functions effective program size

—_
(o))
o
o

Program size in bits

Figure 6.3.4: Bar graph showing effective
size in bits each benchmark function is tak-
ng in program memeory.

Figure 634 represents effective program
size for each test function. On average,
OISC instructions take 41.71% more space
which is expected.

6.4 Maximum clock frequency

To find maximum clock frequency, proces-
sors were loaded with basic print string
function an d 16bit multiplication. Then
frequency was constantly increased until re-
sulting output though UART was not cor-
rect.

In order to change clock frequency, three
parameters were changed and HDL code
resynthesised:

e PLL frequency multiplier and di-
vider: PLL takes 50MHz clock that is
sourced from crystal on FPGA board
and converts it to master clock f,,ck.
Multiplier and divider values are used
to adjust fck-

e UART frequency divider: Division

value was calculated as D = | fmeix |
4fbaud

UART rate was set to 9600 baud.
UART module itself has four times
oversample.

Frequency was changed in 5MHz incre-
ments.

Theoretical maximum frequency was
found using Quartus Timing Analysis tool.
Slow 1200mV 85°C model was used.

Theoretical Actual
RISC | 114.08MHz | 75-7T0MHz
OISC | 64.68MHz | 45-40MHz

Table 6.4.1: Theoretical and actual mazx-
imum frequencies of both processors.

Theoretical and actual results show unex-
pected results shown in Table 6271, RISC
operated at about 40% higher maximum
frequency than OISC.

As explained in Subsection B3, OISC
logic blocks has about twice less time for
data propagation. Keeping that in mind,
and assuming that latch propagation and
register setup periods are insignificant to
critical path of OISC logic block, maximum
OISC frequency could be double as high as,
reaching 80-90MHz. This also assumes that
there is no other part of processor would
have limit. Further timing analysis needs
to be carried out to confirm this.

6.5 Future work

RISC has more sophisticated logic for var-
ious processor components. It is expected
to see RISC having better results due
to its better optimisation. OISC should
be implemented with multiple data & in-
struction buses. This could be performed
with minimal changes on hardware, how-
ever would require many changes in assem-
bly programs. [nstruction composition re-
sults show that OISC takes more instruc-
tions to store values in accumulators, which
can can greatly benefit from multi-bus par-
allelisation. There a single additional bus
should reduce benchmarks time by up to
double, which would be more comparable
with RISC. In addition, multi-bus OISC can
perform truly parallel programs assuming
it has enough processor resources to per-
form operations (for example operate differ-
ent ALU operations at the same time). This

25

potentially would be dominant feature over
RISC in time-sensitive programs, GPIO
(General Purpose Input/Output) and inter-
rupt handling.

Additional buses would not greatly in-
crease processor logic element size, espe-
cially when using interconnect optimisation
techniques [22, 23]. Matching processor
complexity should also allow more fair and
direct comparison specifically between two
architectures.

A number of other improvements and fu-
ture research are proposed:

1. Perform more tests on power analysis
with different frequencies. Find the
activity factor described in Subsection
Wi

2. Further investigate maximum fre-
quency. Try to resolve OISC timing
issue and repeat maximum frequency
test. This would allow to confirm or
deny theorised higher frequency capa-
bilities for OISC.

3. Design a higher level language compiler
such as BASIC or C. This would al-
low to perform more complicated pro-
grams which would more closely relate
to microcontroller operations. How-
ever, OISC compiler would need extra
optimisation layer to efficiently organ-
ise instructions.

4. Compare proposed processor designs
with other commercially available 8-bit
processors such as Atmel AVR micro-
controllers, Motorola 6800 family and
Microchip PIC.

7 Conclusion

In this paper, two novel RISC and OISC-
MOVE architectures are designed and im-
plemented on FPGA. Logic element re-
quirements, power consumption, maximum
frequency where tested and timings of set
of benchmark programs were executed to

compare these two processors to investigate
OISC-MOVE advantages. It is shown that
power consumption differences are insignif-
icant, RISC managed to reach 40% higher
maximum frequency at 75-70MHz, however
due to a design fault in OISC. OISC re-
quired 51.7% less logic elements to imple-
ment on FPGA. Benchmarks showed that
OISC took 71% longer to execute on aver-
age while requiring 41.71% more instruction
space.

This project has sucessfully covered its
goals in studying architectures and inves-
tigating alternative OISC implementation.
Results shows that proposed implementa-
tion of OISC-MOVE may be only suitable
for microprocessor application with very
strict logic element limit.

RISC processor has shown to be supe-
rior in tests, however it has more opti-
mised implementation. Further research in
needed to investigate OISC-MOVE perfor-
mance with multiple data and instruction
buses to match RISC complexity.

References

[1] T.Jamil. “RISC versus CISC”. In: vol. 14. 3.
1995, pp. 13-16. por: 10.1109/45.464688.

[2] E. Blem, J. Menon, and K. Sankaralingam.
“Power struggles: Revisiting the RISC wvs.
CISC debate on contemporary ARM and x86
architectures”. In: 2013. DO1: 10.1109/hpca.

2013. 6522307,

[3] Minato Yokota, Kaoru Saso, and Yuko Hara-
Azumi. “One-instruction set computer-based
multicore processors for energy-efficient
streaming data processing”. In: 2017. DOI:
10.1145/3130265.3130318.

[4] Tanvir Ahmed et al. “Synthesizable-from-C
Embedded Processor Based on MIPS-ISA
and OISC”. In: 2015. por: 10. 1109/ euc.
2015.23.

[5] William F Gilreath and Phillip A Laplante.
Computer Architecture: A Minimalist Per-
spective. Kluwer Academic Publishers, 2003.

26

https://doi.org/10.1109/45.464688
https://doi.org/10.1109/hpca.2013.6522302
https://doi.org/10.1109/hpca.2013.6522302
https://doi.org/10.1145/3130265.3130318
https://doi.org/10.1109/euc.2015.23
https://doi.org/10.1109/euc.2015.23

[10]

[11]

[12]

[13]

H. Corporaal and H. Mulder. “MOVE: a
framework for high-performance processor
design”. In: Supercomputing ’91:Proceedings
of the 1991 ACM/IEEE Conference on Su-
percomputing. 1991, pp. 692-701. DOI: G0-
1145/125826.126159.

Henk Corporaal. MOVES2INT: Architecture
and Programmer’s Reference Manual. Tech.
rep. 1994.

H. Corporaal. “Design of transport triggered
architectures”. In: Proceedings of 4th Great
Lakes Symposium on VLSI 1994, pp. 130-
135. DOI: 10.1109/GLSV.1994.289981.

J. Hu et al. “A Novel Architecture for Fast
RSA Key Generation Based on RNS”. In:
2011 Fourth International Symposium on
Parallel Architectures, Algorithms and Pro-
gramming. 2011, pp. 345-349. po1: 10.1109/
PAAP 2011 /5.

A. Burian, P. Salmela, and J. Takala. “Com-
plex fixed-point matrix inversion using trans-
port triggered architecture”. In: 2005 IEEE
International Conference on Application-
Specific Systems, Architecture Processors
(ASAP’05). 2005, pp. 107-112. pOI: 10
1109/ASAP.2005.25.

J. adnik and J. Takala. “Low-power Pro-
grammable Processor for Fast Fourier Trans-
form Based on Transport Triggered Archi-
tecture”. In: ICASSP 2019 - 2019 IEEE In-
ternational Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2019,
pp- 1423-1427. por: 10.1109/ICASSP.2019.

86827849,

P. Hamalainen et al. “Implementation of en-
cryption algorithms on transport triggered
architectures”. In: ISCAS 2001. The 2001
IEEE International Symposium on Circuits
and Systems (Cat. No.01CHS37196). Vol. 4.
2001, 726-729 vol. 4. po1: 10.1109/ISCAS.

P. Salmela et al. “Scalable FIR filtering on
transport triggered architecture processor”.
In: International Symposium on Signals, Cir-
cuits and Systems, 2005. ISSCS 2005. Vol. 2.
2005, 493-496 Vol. 2. por: 10.1109/ISSCS.
20051511288,

B. Rister et al. “Parallel programming of
a symmetric transport-triggered architecture
with applications in flexible LDPC encod-
ing”. In: 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 2014, pp. 8380-8384. DOI:
10.1109/ICASSP.2014.6855236.

27

[15]

[16]

[17]

[19]

[20]

[21]

22]

J. Multanen et al. “Power optimizations for
transport triggered SIMD processors”. In:
2015 International Conference on Embedded
Computer Systems: Architectures, Modeling,
and Simulation (SAMOS). 2015, pp. 303—
309. por: 10.1109/SAMUS.2015.7363689.

M. Safarpour, I. Hautala, and O. Silvén.
“An Embedded Programmable Processor for
Compressive Sensing Applications”. In: 2018
IEEE Nordic Circuits and Systems Confer-
ence (NORCAS): NORCHIP and Interna-
tional Symposium of System-on-Chip (SoC).
2018, pp. 1-5. DOL: 10, 1109/NORCHIP. 2018.
Bh73494.

J. Heikkinen et al. “Evaluating template-
based instruction compression on transport
triggered architectures”. In: The 3rd IEEFE
International Workshop on System-on-Chip
for Real-Time Applications, 2003. Proceed-
ings. 2003, pp. 192-195. por: 10 . 11097/
TWSOC 20031713033,

J. Helkala et al. “Variable length instruc-
tion compression on Transport Triggered Ar-
chitectures”. In: 2014 International Confer-
ence on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS
XIV). 2014, pp. 149-155. por: 10 . 11097

J. Wei et al. “Program Compression Based
on Arithmetic Coding on Transport Trig-
gered Architecture”. In: 2008 International
Conference on Embedded Software and Sys-
tems Symposia. 2008, pp. 126-131. DOL: Q0=
1109/ICESS.Symposia.2008.9.

Su Wang et al. “An instruction redundancy
removal method on a transport triggered ar-
chitecture processor”. In: Proceedings of the
2009 12th International Symposium on Inte-
grated Circuits. 2009, pp. 602—604.

L. Jiang, Y. Zhu, and Y. Wei. “Software
Pipelining with Minimal Loop Overhead on
Transport Triggered Architecture”. In: 2008
International Conference on Embedded Soft-
ware and Systems. 2008, pp. 451-458. DOI:
10.1109/ICESS.2008.18.

T. Pionteck et al. “Hardware evaluation of
low power communication mechanisms for
transport-triggered architectures”. In: 14th
IEEE International Workshop on Rapid Sys-
tems Prototyping, 2003. Proceedings. 2003,
pp. 141-147. por: 10.1109/ IWRSP . 2003.
1207047,

https://doi.org/10.1145/125826.126159
https://doi.org/10.1145/125826.126159
https://doi.org/10.1109/GLSV.1994.289981
https://doi.org/10.1109/PAAP.2011.75
https://doi.org/10.1109/PAAP.2011.75
https://doi.org/10.1109/ASAP.2005.25
https://doi.org/10.1109/ASAP.2005.25
https://doi.org/10.1109/ICASSP.2019.8682289
https://doi.org/10.1109/ICASSP.2019.8682289
https://doi.org/10.1109/ISCAS.2001.922340
https://doi.org/10.1109/ISCAS.2001.922340
https://doi.org/10.1109/ISSCS.2005.1511285
https://doi.org/10.1109/ISSCS.2005.1511285
https://doi.org/10.1109/ICASSP.2014.6855236
https://doi.org/10.1109/SAMOS.2015.7363689
https://doi.org/10.1109/NORCHIP.2018.8573494
https://doi.org/10.1109/NORCHIP.2018.8573494
https://doi.org/10.1109/IWSOC.2003.1213033
https://doi.org/10.1109/IWSOC.2003.1213033
https://doi.org/10.1109/SAMOS.2014.6893206
https://doi.org/10.1109/SAMOS.2014.6893206
https://doi.org/10.1109/ICESS.Symposia.2008.9
https://doi.org/10.1109/ICESS.Symposia.2008.9
https://doi.org/10.1109/ICESS.2008.18
https://doi.org/10.1109/IWRSP.2003.1207041
https://doi.org/10.1109/IWRSP.2003.1207041

[23]

[24]

T. Viitanen et al. “Heuristics for greedy
transport triggered architecture interconnect
exploration”. In: 2014 International Confer-
ence on Compilers, Architecture and Synthe-
sis for Embedded Systems (CASES). 2014,
pp. 1-7. DOI: 10.1145/2656106.2656123.

S. Hauser, N. Moser, and B. Juurlink.
“SynZEN: A hybrid TTA/VLIW architec-
ture with a distributed register file”. In:
NORCHIP 2012. 2012, pp. 1-4. por: io-
1109/NORCHP.2012.6403142.

David Money Harris and Sarah L Harris.
Digital design and computer architecture.
2nd ed. Elsevier, 2013.

Frangois Morain. “Atkin’s Test: News from
the Front”. In: 1989, pp. 626—635. DOI: A0
1007/3-540-46885-4 59.

28

https://doi.org/10.1145/2656106.2656123
https://doi.org/10.1109/NORCHP.2012.6403142
https://doi.org/10.1109/NORCHP.2012.6403142
https://doi.org/10.1007/3-540-46885-4_59
https://doi.org/10.1007/3-540-46885-4_59

8 Appendix

8.1 Processor instruction set tables

Table 8.1.1: Instruction set for RISC processor. * Required immediate size in bytes

Instr. | Description | I-size *
2 register instructions
MOVE | Copy value from one register to other 0
ADD Arithmetical addition 0
SUB Arithmetical subtraction 0
AND Logical AND 0
OR Logical OR 0
XOR Logical XOR 0
MUL Arithmetical multiplication 0
DIV Arithmetical division (inc. modulo) 0
1 register instructions
COPYO0 | Copy intimidate to a register 0 1
COPY1 | Copy intimidate to a register 1 1
COPY2 | Copy intimidate to a register 2 1
COPY3 | Copy intimidate to a register 3 1
ADDC | Arithmetical addition with carry bit 0
ADDI Arithmetical addition with immediate 1
SUBC Arithmetical subtraction with carry bit 0
SUBI Arithmetical subtraction with immediate 1
ANDI Logical AND with immediate 1
ORI Logical OR with immediate 1
XORI Logical XOR with immediate 1
CI0 Replace intimidate value byte 0 for next instruction 1
CI1 Replace intimidate value byte 1 for next instruction 1
CI2 Replace intimidate value byte 2 for next instruction 1
SLL Shift left logical 1
SRL Shift right logical 1
SRA Shift right arithmetical 1
LWHI Load word (high byte) 3
SWHI Store word (high byte, reg. only) 0
LWLO | Load word (low byte) 3
SWLO | Store word (low byte, stores high byte reg.) 3
INC Increase by 1 0
DEC Decrease by 1 0
GETAH | Get ALU high byte reg. (only for MUL & DIV & ROL & 0
ROR)
GETIF | Get interrupt flags 0
PUSH Push to stack 0
POP Pop from stack 0
COM Send/Receive to/from com. block 1
BEQ Branch on equal 3
BGT Branch on greater than 3

29

Table 8.1.1: Instruction set for RISC processor. * Required immediate size in bytes

Instr. Description I-size *
BGE Branch on greater equal than 3
BZ Branch on zero 2
0 register instructions
CALL Call function, put return to stack 2
RET Return from function 0
JUMP Jump to address 2
RETI Return from interrupt 0
INTRE | Set interrupt entry pointer 2
Table 8.1.2: Instructions for OISC processor.
Name ‘ Description
Destination Addresses
ACCO Set ALU source A accumulator
ACC1 Set ALU source B accumulator
BRO Set Branch pointer register (low byte)
BR1 Set Branch pointer register (high byte)
BRZ If source value is 0, set program counter to branch pointer
STACK | Push value to stack
MEMO Set Memory pointer register (low byte)
MEM1 Set Memory pointer register (middle byte)
MEM?2 Set Memory pointer register (high byte)
MEMHI | Save high byte to memory at memory pointer
MEMLO | Save low byte to memory at memory pointer
COMA | Set communication block address register
COMD | Send value to communication block
REGO Set general purpose register 0
REG1 set general purpose register 1
Source Addresses
NULL Get constant 0
ALUO Get value at ALU source A accumulator
ALU1 Get value at ALU source B accumulator
ADD Get Arithmetical addition of ALU sources
ADDC Get Arithmetical addition carry
ADC Get Arithmetical addition of ALU sources and carry
SUB Get Arithmetical subtraction of ALU sources
SUBC Get Arithmetical subtraction carry
SBC Get Arithmetical subtraction of ALU sources and carry
AND Get Logical AND of ALU sources
OR Get Logical OR of ALU sources
XOR Get Logical XOR of ALU sources
SLL Get ALU source A shifted left by source B
SRL Get ALU source A shifted right by source B
ROL Get rolled off value from previous SLL instance
ROR Get rolled off value from previous SRL instance

30

Table 8.1.2: Instructions for OISC processor.

Name Description

MULLO | Get Arithmetical multiplication of ALU sources (low byte)
MULHI | Get Arithmetical multiplication of ALU sources (high byte)
DIV Get Arithmetical division of ALU sources

MOD Get Arithmetical modulo of ALU sources

EQ Check if ALU source A is equal to source B

GT Check if ALU source A is greater than source B

GE Check if ALU source A is greater or equal to source B
NE Check if ALU source A is not equal to source B

LT Check if ALU source A is less than source B

LE Check if ALU source A is less or equal to to source B
BRO Get Branch pointer register value (low byte)

BR1 Get Branch pointer register value (high byte)

PCO Get Program counter value (low byte)

PC1 Get Program counter value (high byte)

MEMO Get Memory pointer register value (low byte)

MEM1 Get Memory pointer register value (middle byte)
MEM?2 Get Memory pointer register value (high byte)
MEMHI | Load high byte from memory at memory pointer
MEMLO | Load low byte from memory at memory pointer
STACK | Pop value from stack

STO Get stack address value (low byte)

ST1 Get stack address value (high byte)

COMA Get communication block address register value
COMD Read value from communication block

REGO Get value from general purpose register 0

REG1 Get value from general purpose register 1

31

	Abstract
	Introduction
	Aims and Objectives
	Related Work
	Project contents

	Goals and Objectives
	RISC Processor
	OISC Processor
	Design Criteria
	Benchmark

	Theory and Analytical Bases
	RISC Processor
	Pipelining
	Multiple cores

	OISC Processor
	OISC Pipelining

	Predictions
	Execution time
	Instruction Space
	Resources

	Technical Method
	Machine Code
	RISC Machine Code
	OISC Machine Code

	Data flow
	RISC Datapath
	OISC Datapath
	OISC Datapath Implementation Problems

	Stack
	RISC Stack
	OISC Stack

	Program Counters
	RISC Program Counter
	OISC Program Counter

	Arithmetic Logic Unit
	OISC ALU
	RISC ALU

	Program Memory
	RISC Program Memory
	OISC Program Memory

	Instruction decoding
	RISC IMO
	OISC Instruction decoding

	Assembly
	System setup

	Results and Analysis
	FPGA logic component composition
	Power analysis
	Activity Factor

	Benchmark Programs
	Instruction composition
	Performance
	Program space

	Maximum clock frequency
	Future work

	Conclusion
	Appendix
	Processor instruction set tables

