| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- // Copyright 2016 The G3N Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package math32
- // Curve constructs an array of Vector3
- type Curve struct {
- points []Vector3
- length float32
- }
- func (c *Curve) GetPoints() []Vector3 {
- return c.points
- }
- func (c *Curve) GetLength() float32 {
- return c.length
- }
- func (c *Curve) SetLength() {
- points := c.points
- l := float32(0.0)
- for i := 1; i < len(points); i++ {
- p0 := points[i].Clone()
- p1 := points[i-1].Clone()
- l += (p0.Sub(p1)).Length()
- }
- c.length = l
- }
- // Continue combines two curves
- // creates and returns a pointer to a new curve
- // combined curves are unaffected
- func (c *Curve) Continue(other *Curve) *Curve {
- last := c.points[len(c.points)-1].Clone()
- first := other.points[0].Clone()
- var continued, otherpoints []Vector3
- for i := 0; i < len(c.points); i++ {
- continued = append(continued, *c.points[i].Clone())
- }
- for i := 1; i < len(other.points); i++ {
- otherpoints = append(otherpoints, *other.points[i].Clone())
- }
- for i := 0; i < len(otherpoints); i++ {
- continued = append(continued, *otherpoints[i].Sub(first).Add(last))
- }
- newC := new(Curve)
- newC.points = continued
- newC.SetLength()
- return newC
- }
- // NewBezierQuadratic creates and returns a pointer to a new curve
- // Uses Vector3 pointers origin, control, and destination to calculate with
- // int npoints as the desired number of points along the curve
- func NewBezierQuadratic(origin, control, destination *Vector3, npoints int) *Curve {
- c := new(Curve)
- if npoints <= 2 {
- npoints = 3
- }
- var equation = func(t, v0, v1, v2 float32) float32 {
- a0 := 1.0 - t
- result := a0*a0*v0 + 2.0*t*a0*v1 + t*t*v2
- return result
- }
- var bezier []Vector3
- for i := 0; i <= npoints; i++ {
- t := float32(i) / float32(npoints)
- x := equation(t, origin.X, control.X, destination.X)
- y := equation(t, origin.Y, control.Y, destination.Y)
- z := equation(t, origin.Z, control.Z, destination.Z)
- vect := NewVector3(x, y, z)
- bezier = append(bezier, *vect)
- }
- c.points = bezier
- c.SetLength()
- return c
- }
- // NewBezierCubic creates and returns a pointer to a new curve
- // Uses Vector3 pointers origin, control1, control2, and destination to calculate with
- // int npoints as the desired number of points along the curve
- func NewBezierCubic(origin, control1, control2, destination *Vector3, npoints int) *Curve {
- c := new(Curve)
- if npoints <= 3 {
- npoints = 4
- }
- var equation = func(t, v0, v1, v2, v3 float32) float32 {
- a0 := 1.0 - t
- result := a0*a0*a0*v0 + 3.0*t*a0*a0*v1 + 3.0*t*t*a0*v2 + t*t*t*v3
- return result
- }
- var bezier []Vector3
- for i := 0; i <= npoints; i++ {
- t := float32(i) / float32(npoints)
- x := equation(t, origin.X, control1.X, control2.X, destination.X)
- y := equation(t, origin.Y, control1.Y, control2.Y, destination.Y)
- z := equation(t, origin.Z, control1.Z, control2.Z, destination.Z)
- vect := NewVector3(x, y, z)
- bezier = append(bezier, *vect)
- }
- c.points = bezier
- c.SetLength()
- return c
- }
- // NewHermiteSpline creates and returns a pointer to a new curve
- // Uses Vector3 pointers origin, tangent1, destination, and tangent2 to calculate with
- // int npoints as the desired number of points along the curve
- func NewHermiteSpline(origin, tangent1, destination, tangent2 *Vector3, npoints int) *Curve {
- c := new(Curve)
- var equation = func(t float32, v0, tan0, v1, tan1 *Vector3) *Vector3 {
- t2 := t * t
- t3 := t * t2
- p0 := (2.0 * t3) - (3.0 * t2) + 1.0
- p1 := (-2.0 * t3) + (3.0 * t2)
- p2 := t3 - (2.0 * t2) + t
- p3 := t3 - t2
- x := (v0.X * p0) + (v1.X * p1) + (tan0.X * p2) + (tan1.X * p3)
- y := (v0.Y * p0) + (v1.Y * p1) + (tan0.Y * p2) + (tan1.Y * p3)
- z := (v0.Z * p0) + (v1.Z * p1) + (tan0.Z * p2) + (tan1.Z * p3)
- return NewVector3(x, y, z)
- }
- step := float32(1.0) / float32(npoints)
- var hermite []Vector3
- for i := 0; i <= npoints; i++ {
- vect := equation(float32(i)*step, origin, tangent1, destination, tangent2)
- hermite = append(hermite, *vect)
- }
- c.points = hermite
- c.SetLength()
- return c
- }
- // NewCatmullRomSpline creates and returns a pointer to a new curve
- // Uses array of Vector3 pointers with int npoints as the desired number of points between supplied points
- // Use Boolean closed with true to close the start and end points
- func NewCatmullRomSpline(points []*Vector3, npoints int, closed bool) *Curve {
- c := new(Curve)
- var equation = func(t float32, v0, v1, v2, v3 *Vector3) *Vector3 {
- t2 := t * t
- t3 := t * t2
- x := 0.5 * ((((2.0 * v1.X) + ((-v0.X + v2.X) * t)) +
- (((((2.0 * v0.X) - (5.0 * v1.X)) + (4.0 * v2.X)) - v3.X) * t2)) +
- ((((-v0.X + (3.0 * v1.X)) - (3.0 * v2.X)) + v3.X) * t3))
- y := 0.5 * ((((2.0 * v1.Y) + ((-v0.Y + v2.Y) * t)) +
- (((((2.0 * v0.Y) - (5.0 * v1.Y)) + (4.0 * v2.Y)) - v3.Y) * t2)) +
- ((((-v0.Y + (3.0 * v1.Y)) - (3.0 * v2.Y)) + v3.Y) * t3))
- z := 0.5 * ((((2.0 * v1.Z) + ((-v0.Z + v2.Z) * t)) +
- (((((2.0 * v0.Z) - (5.0 * v1.Z)) + (4.0 * v2.Z)) - v3.Z) * t2)) +
- ((((-v0.Z + (3.0 * v1.Z)) - (3.0 * v2.Z)) + v3.Z) * t3))
- return NewVector3(x, y, z)
- }
- step := float32(1.0) / float32(npoints)
- var catmull []Vector3
- var t float32
- if closed {
- count := len(points)
- for i := 0; i < count; i++ {
- t = 0.0
- for n := 0; n < npoints; n++ {
- vect := equation(t, points[i%count], points[(i+1)%count], points[(i+2)%count], points[(i+3)%count])
- catmull = append(catmull, *vect)
- t += step
- }
- }
- catmull = append(catmull, catmull[0])
- } else {
- total := []*Vector3{points[0].Clone()}
- total = append(total, points...)
- total = append(total, points[len(points)-1].Clone())
- var i int
- for i = 0; i < len(total)-3; i++ {
- t = 0
- for n := 0; n < npoints; n++ {
- vect := equation(t, total[i], total[i+1], total[i+2], total[i+3])
- catmull = append(catmull, *vect)
- t += step
- }
- }
- i--
- vect := equation(t, total[i], total[i+1], total[i+2], total[i+3])
- catmull = append(catmull, *vect)
- }
- c.points = catmull
- c.SetLength()
- return c
- }
|