| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511 |
- // Copyright 2016 The G3N Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package math32
- // Ray represents an oriented 3D line segment defined by an origin point and a direction vector.
- type Ray struct {
- origin Vector3
- direction Vector3
- }
- // NewRay creates and returns a pointer to a Ray object with
- // the specified origin and direction vectors.
- // If a nil pointer is supplied for any of the parameters,
- // the zero vector will be used.
- func NewRay(origin *Vector3, direction *Vector3) *Ray {
- ray := new(Ray)
- if origin != nil {
- ray.origin = *origin
- }
- if direction != nil {
- ray.direction = *direction
- }
- return ray
- }
- // Set sets the origin and direction vectors of this Ray.
- func (ray *Ray) Set(origin, direction *Vector3) *Ray {
- ray.origin = *origin
- ray.direction = *direction
- return ray
- }
- // Copy copies other ray into this one.
- func (ray *Ray) Copy(other *Ray) *Ray {
- *ray = *other
- return ray
- }
- // Origin returns a copy of this ray current origin.
- func (ray *Ray) Origin() Vector3 {
- return ray.origin
- }
- // Direction returns a copy of this ray current direction.
- func (ray *Ray) Direction() Vector3 {
- return ray.direction
- }
- // At calculates the point in the ray which is at the specified t distance from the origin
- // along its direction.
- // The calculated point is stored in optionalTarget, if not nil, and also returned.
- func (ray *Ray) At(t float32, optionalTarget *Vector3) *Vector3 {
- var result *Vector3
- if optionalTarget != nil {
- result = optionalTarget
- } else {
- result = &Vector3{}
- }
- return result.Copy(&ray.direction).MultiplyScalar(t).Add(&ray.origin)
- }
- // Recast sets the new origin of the ray at the specified distance t
- // from its origin along its direction.
- func (ray *Ray) Recast(t float32) *Ray {
- var v1 Vector3
- ray.origin.Copy(ray.At(t, &v1))
- return ray
- }
- // ClosestPointToPoint calculates the point in the ray which is closest to the specified point.
- // The calculated point is stored in optionalTarget, if not nil, and also returned.
- func (ray *Ray) ClosestPointToPoint(point, optionalTarget *Vector3) *Vector3 {
- var result *Vector3
- if optionalTarget != nil {
- result = optionalTarget
- } else {
- result = NewVector3(0, 0, 0)
- }
- result.SubVectors(point, &ray.origin)
- directionDistance := result.Dot(&ray.direction)
- if directionDistance < 0 {
- return result.Copy(&ray.origin)
- }
- return result.Copy(&ray.direction).MultiplyScalar(directionDistance).Add(&ray.origin)
- }
- // DistanceToPoint returns the smallest distance
- // from the ray direction vector to the specified point.
- func (ray *Ray) DistanceToPoint(point *Vector3) float32 {
- return Sqrt(ray.DistanceSqToPoint(point))
- }
- // DistanceSqToPoint returns the smallest squared distance
- // from the ray direction vector to the specified point.
- // If the ray was pointed directly at the point this distance would be 0.
- func (ray *Ray) DistanceSqToPoint(point *Vector3) float32 {
- var v1 Vector3
- directionDistance := v1.SubVectors(point, &ray.origin).Dot(&ray.direction)
- // point behind the ray
- if directionDistance < 0 {
- return ray.origin.DistanceTo(point)
- }
- v1.Copy(&ray.direction).MultiplyScalar(directionDistance).Add(&ray.origin)
- return v1.DistanceToSquared(point)
- }
- // DistanceSqToSegment returns the smallest squared distance
- // from this ray to the line segment from v0 to v1.
- // If optionalPointOnRay Vector3 is not nil,
- // it is set with the coordinates of the point on the ray.
- // if optionalPointOnSegment Vector3 is not nil,
- // it is set with the coordinates of the point on the segment.
- func (ray *Ray) DistanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment *Vector3) float32 {
- var segCenter Vector3
- var segDir Vector3
- var diff Vector3
- segCenter.Copy(v0).Add(v1).MultiplyScalar(0.5)
- segDir.Copy(v1).Sub(v0).Normalize()
- diff.Copy(&ray.origin).Sub(&segCenter)
- segExtent := v0.DistanceTo(v1) * 0.5
- a01 := -ray.direction.Dot(&segDir)
- b0 := diff.Dot(&ray.direction)
- b1 := -diff.Dot(&segDir)
- c := diff.LengthSq()
- det := Abs(1 - a01*a01)
- var s0, s1, sqrDist, extDet float32
- if det > 0 {
- // The ray and segment are not parallel.
- s0 = a01*b1 - b0
- s1 = a01*b0 - b1
- extDet = segExtent * det
- if s0 >= 0 {
- if s1 >= -extDet {
- if s1 <= extDet {
- // region 0
- // Minimum at interior points of ray and segment.
- invDet := 1 / det
- s0 *= invDet
- s1 *= invDet
- sqrDist = s0*(s0+a01*s1+2*b0) + s1*(a01*s0+s1+2*b1) + c
- } else {
- // region 1
- s1 = segExtent
- s0 = Max(0, -(a01*s1 + b0))
- sqrDist = -s0*s0 + s1*(s1+2*b1) + c
- }
- } else {
- // region 5
- s1 = -segExtent
- s0 = Max(0, -(a01*s1 + b0))
- sqrDist = -s0*s0 + s1*(s1+2*b1) + c
- }
- } else {
- if s1 <= -extDet {
- // region 4
- s0 = Max(0, -(-a01*segExtent + b0))
- if s0 > 0 {
- s1 = -segExtent
- } else {
- s1 = Min(Max(-segExtent, -b1), segExtent)
- }
- sqrDist = -s0*s0 + s1*(s1+2*b1) + c
- } else if s1 <= extDet {
- // region 3
- s0 = 0
- s1 = Min(Max(-segExtent, -b1), segExtent)
- sqrDist = s1*(s1+2*b1) + c
- } else {
- // region 2
- s0 = Max(0, -(a01*segExtent + b0))
- if s0 > 0 {
- s1 = segExtent
- } else {
- s1 = Min(Max(-segExtent, -b1), segExtent)
- }
- sqrDist = -s0*s0 + s1*(s1+2*b1) + c
- }
- }
- } else {
- // Ray and segment are parallel.
- if a01 > 0 {
- s1 = -segExtent
- } else {
- s1 = segExtent
- }
- s0 = Max(0, -(a01*s1 + b0))
- sqrDist = -s0*s0 + s1*(s1+2*b1) + c
- }
- if optionalPointOnRay != nil {
- optionalPointOnRay.Copy(&ray.direction).MultiplyScalar(s0).Add(&ray.origin)
- }
- if optionalPointOnSegment != nil {
- optionalPointOnSegment.Copy(&segDir).MultiplyScalar(s1).Add(&segCenter)
- }
- return sqrDist
- }
- // IsIntersectionSphere returns if this ray intersects with the specified sphere.
- func (ray *Ray) IsIntersectionSphere(sphere *Sphere) bool {
- if ray.DistanceToPoint(&sphere.Center) <= sphere.Radius {
- return true
- }
- return false
- }
- // IntersectSphere calculates the point which is the intersection of this ray with the specified sphere.
- // The calculated point is stored in optionalTarget, it not nil, and also returned.
- // If no intersection is found the calculated point is set to nil.
- func (ray *Ray) IntersectSphere(sphere *Sphere, optionalTarget *Vector3) *Vector3 {
- var v1 Vector3
- v1.SubVectors(&sphere.Center, &ray.origin)
- tca := v1.Dot(&ray.direction)
- d2 := v1.Dot(&v1) - tca*tca
- radius2 := sphere.Radius * sphere.Radius
- if d2 > radius2 {
- return nil
- }
- thc := Sqrt(radius2 - d2)
- // t0 = first intersect point - entrance on front of sphere
- t0 := tca - thc
- // t1 = second intersect point - exit point on back of sphere
- t1 := tca + thc
- // test to see if both t0 and t1 are behind the ray - if so, return null
- if t0 < 0 && t1 < 0 {
- return nil
- }
- // test to see if t0 is behind the ray:
- // if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
- // in order to always return an intersect point that is in front of the ray.
- if t0 < 0 {
- return ray.At(t1, optionalTarget)
- }
- // else t0 is in front of the ray, so return the first collision point scaled by t0
- return ray.At(t0, optionalTarget)
- }
- // IsIntersectPlane returns if this ray intersects the specified plane.
- func (ray *Ray) IsIntersectPlane(plane *Plane) bool {
- distToPoint := plane.DistanceToPoint(&ray.origin)
- if distToPoint == 0 {
- return true
- }
- denominator := plane.normal.Dot(&ray.direction)
- if denominator*distToPoint < 0 {
- return true
- }
- // ray origin is behind the plane (and is pointing behind it)
- return false
- }
- // DistanceToPlane returns the distance of this ray origin to its intersection point in the plane.
- // If the ray does not intersects the plane, returns NaN.
- func (ray *Ray) DistanceToPlane(plane *Plane) float32 {
- denominator := plane.normal.Dot(&ray.direction)
- if denominator == 0 {
- // line is coplanar, return origin
- if plane.DistanceToPoint(&ray.origin) == 0 {
- return 0
- }
- return NaN()
- }
- t := -(ray.origin.Dot(&plane.normal) + plane.constant) / denominator
- // Return if the ray never intersects the plane
- if t >= 0 {
- return t
- }
- return NaN()
- }
- // IntersectPlane calculates the point which is the intersection of this ray with the specified plane.
- // The calculated point is stored in optionalTarget, if not nil, and also returned.
- // If no intersection is found the calculated point is set to nil.
- func (ray *Ray) IntersectPlane(plane *Plane, optionalTarget *Vector3) *Vector3 {
- t := ray.DistanceToPlane(plane)
- if t == NaN() {
- return nil
- }
- return ray.At(t, optionalTarget)
- }
- // IsIntersectionBox returns if this ray intersects the specified box.
- func (ray *Ray) IsIntersectionBox(box *Box3) bool {
- var v Vector3
- if ray.IntersectBox(box, &v) != nil {
- return true
- }
- return false
- }
- // IntersectBox calculates the point which is the intersection of this ray with the specified box.
- // The calculated point is stored in optionalTarget, it not nil, and also returned.
- // If no intersection is found the calculated point is set to nil.
- func (ray *Ray) IntersectBox(box *Box3, optionalTarget *Vector3) *Vector3 {
- // http://www.scratchapixel.com/lessons/3d-basic-lessons/lesson-7-intersecting-simple-shapes/ray-box-intersection/
- var tmin, tmax, tymin, tymax, tzmin, tzmax float32
- invdirx := 1 / ray.direction.X
- invdiry := 1 / ray.direction.Y
- invdirz := 1 / ray.direction.Z
- var origin = ray.origin
- if invdirx >= 0 {
- tmin = (box.Min.X - origin.X) * invdirx
- tmax = (box.Max.X - origin.X) * invdirx
- } else {
- tmin = (box.Max.X - origin.X) * invdirx
- tmax = (box.Min.X - origin.X) * invdirx
- }
- if invdiry >= 0 {
- tymin = (box.Min.Y - origin.Y) * invdiry
- tymax = (box.Max.Y - origin.Y) * invdiry
- } else {
- tymin = (box.Max.Y - origin.Y) * invdiry
- tymax = (box.Min.Y - origin.Y) * invdiry
- }
- if (tmin > tymax) || (tymin > tmax) {
- return nil
- }
- // These lines also handle the case where tmin or tmax is NaN
- // (result of 0 * Infinity). x !== x returns true if x is NaN
- if tymin > tmin || tmin != tmin {
- tmin = tymin
- }
- if tymax < tmax || tmax != tmax {
- tmax = tymax
- }
- if invdirz >= 0 {
- tzmin = (box.Min.Z - origin.Z) * invdirz
- tzmax = (box.Max.Z - origin.Z) * invdirz
- } else {
- tzmin = (box.Max.Z - origin.Z) * invdirz
- tzmax = (box.Min.Z - origin.Z) * invdirz
- }
- if (tmin > tzmax) || (tzmin > tmax) {
- return nil
- }
- if tzmin > tmin || tmin != tmin {
- tmin = tzmin
- }
- if tzmax < tmax || tmax != tmax {
- tmax = tzmax
- }
- //return point closest to the ray (positive side)
- if tmax < 0 {
- return nil
- }
- if tmin >= 0 {
- return ray.At(tmin, optionalTarget)
- }
- return ray.At(tmax, optionalTarget)
- }
- // IntersectTriangle returns if this ray intersects the triangle with the face
- // defined by points a, b, c. Returns true if it intersects and sets the point
- // parameter with the intersected point coordinates.
- // If backfaceCulling is false it ignores the intersection if the face is not oriented
- // in the ray direction.
- func (ray *Ray) IntersectTriangle(a, b, c *Vector3, backfaceCulling bool, point *Vector3) bool {
- var diff Vector3
- var edge1 Vector3
- var edge2 Vector3
- var normal Vector3
- edge1.SubVectors(b, a)
- edge2.SubVectors(c, a)
- normal.CrossVectors(&edge1, &edge2)
- // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
- // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
- // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
- // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
- // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
- DdN := ray.direction.Dot(&normal)
- var sign float32
- if DdN > 0 {
- if backfaceCulling {
- return false
- }
- sign = 1
- } else if DdN < 0 {
- sign = -1
- DdN = -DdN
- } else {
- return false
- }
- diff.SubVectors(&ray.origin, a)
- DdQxE2 := sign * ray.direction.Dot(edge2.CrossVectors(&diff, &edge2))
- // b1 < 0, no intersection
- if DdQxE2 < 0 {
- return false
- }
- DdE1xQ := sign * ray.direction.Dot(edge1.Cross(&diff))
- // b2 < 0, no intersection
- if DdE1xQ < 0 {
- return false
- }
- // b1+b2 > 1, no intersection
- if DdQxE2+DdE1xQ > DdN {
- return false
- }
- // Line intersects triangle, check if ray does.
- QdN := -sign * diff.Dot(&normal)
- // t < 0, no intersection
- if QdN < 0 {
- return false
- }
- // Ray intersects triangle.
- ray.At(QdN/DdN, point)
- return true
- }
- // ApplyMatrix4 multiplies this ray origin and direction
- // by the specified matrix4, basically transforming this ray coordinates.
- func (ray *Ray) ApplyMatrix4(matrix4 *Matrix4) *Ray {
- ray.direction.Add(&ray.origin).ApplyMatrix4(matrix4)
- ray.origin.ApplyMatrix4(matrix4)
- ray.direction.Sub(&ray.origin)
- ray.direction.Normalize()
- return ray
- }
- // Equals returns if this ray is equal to other
- func (ray *Ray) Equals(other *Ray) bool {
- return ray.origin.Equals(&other.origin) && ray.direction.Equals(&other.direction)
- }
- // Clone creates and returns a pointer to copy of this ray.
- func (ray *Ray) Clone() *Ray {
- return NewRay(&ray.origin, &ray.direction)
- }
|