| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533 |
- // Copyright 2016 The G3N Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package physics
- import (
- "github.com/g3n/engine/graphic"
- "github.com/g3n/engine/math32"
- )
- // Body represents a physics-driven body.
- type Body struct {
- *graphic.Graphic // TODO future - embed core.Node instead and calculate properties recursively
- simulation *Simulation // Reference to the simulation the body is living in\
- material *Material // Physics material specifying friction and restitution
- index int
- // Mass properties
- mass float32 // Total mass
- invMass float32
- invMassEff float32 // Effective inverse mass
- // Rotational inertia and related properties
- rotInertia *math32.Matrix3 // Angular mass i.e. moment of inertia in local coordinates
- invRotInertia *math32.Matrix3 // Inverse rotational inertia in local coordinates
- invRotInertiaEff *math32.Matrix3 // Effective inverse rotational inertia in local coordinates
- invRotInertiaWorld *math32.Matrix3 // Inverse rotational inertia in world coordinates
- invRotInertiaWorldEff *math32.Matrix3 // Effective rotational inertia in world coordinates
- fixedRotation bool // Set to true if you don't want the body to rotate. Make sure to run .updateMassProperties() after changing this.
- // Position
- position *math32.Vector3 // World position of the center of gravity (World space position of the body.)
- initPosition *math32.Vector3 // Initial position of the body.
- prevPosition *math32.Vector3 // Previous position
- interpPosition *math32.Vector3 // Interpolated position of the body.
- // Rotation
- quaternion *math32.Quaternion // World space orientation of the body.
- initQuaternion *math32.Quaternion
- prevQuaternion *math32.Quaternion
- interpQuaternion *math32.Quaternion // Interpolated orientation of the body.
- // Linear and angular velocities
- velocity *math32.Vector3 // Linear velocity (World space velocity of the body.)
- initVelocity *math32.Vector3 // Initial linear velocity (World space velocity of the body.)
- angularVelocity *math32.Vector3 // Angular velocity of the body, in world space. Think of the angular velocity as a vector, which the body rotates around. The length of this vector determines how fast (in radians per second) the body rotates.
- initAngularVelocity *math32.Vector3
- // Force and torque
- force *math32.Vector3 // Linear force on the body in world space.
- torque *math32.Vector3 // World space rotational force on the body, around center of mass.
- // Damping and factors
- linearDamping float32
- angularDamping float32
- linearFactor *math32.Vector3 // Use this property to limit the motion along any world axis. (1,1,1) will allow motion along all axes while (0,0,0) allows none.
- angularFactor *math32.Vector3 // Use this property to limit the rotational motion along any world axis. (1,1,1) will allow rotation along all axes while (0,0,0) allows none.
- // Body type and sleep settings
- bodyType BodyType
- sleepState BodySleepState // Current sleep state.
- allowSleep bool // If true, the body will automatically fall to sleep.
- sleepSpeedLimit float32 // If the speed (the norm of the velocity) is smaller than this value, the body is considered sleepy.
- sleepTimeLimit float32 // If the body has been sleepy for this sleepTimeLimit seconds, it is considered sleeping.
- timeLastSleepy float32
- wakeUpAfterNarrowphase bool
- // Collision settings
- collisionFilterGroup int
- collisionFilterMask int
- collisionResponse bool // Whether to produce contact forces when in contact with other bodies. Note that contacts will be generated, but they will be disabled.
- aabb *math32.Box3 // World space bounding box of the body and its shapes.
- aabbNeedsUpdate bool // Indicates if the AABB needs to be updated before use.
- boundingRadius float32 // Total bounding radius of the body (TODO including its shapes, relative to body.position.)
- // TODO future (for now a body is a single graphic with a single geometry)
- // shapes []*Shape
- // shapeOffsets []float32 // Position of each Shape in the body, given in local Body space.
- // shapeOrientations [] ?
- }
- // BodyType specifies how the body is affected during the simulation.
- type BodyType int
- const (
- // A static body does not move during simulation and behaves as if it has infinite mass.
- // Static bodies can be moved manually by setting the position of the body.
- // The velocity of a static body is always zero.
- // Static bodies do not collide with other static or kinematic bodies.
- Static = BodyType(iota)
- // A kinematic body moves under simulation according to its velocity.
- // They do not respond to forces.
- // They can be moved manually, but normally a kinematic body is moved by setting its velocity.
- // A kinematic body behaves as if it has infinite mass.
- // Kinematic bodies do not collide with other static or kinematic bodies.
- Kinematic
- // A dynamic body is fully simulated.
- // Can be moved manually by the user, but normally they move according to forces.
- // A dynamic body can collide with all body types.
- // A dynamic body always has finite, non-zero mass.
- Dynamic
- )
- // BodyStatus specifies
- type BodySleepState int
- const (
- Awake = BodySleepState(iota)
- Sleepy
- Sleeping
- )
- // Events
- const (
- SleepyEvent = "physics.SleepyEvent" // Dispatched after a body has gone in to the sleepy state.
- SleepEvent = "physics.SleepEvent" // Dispatched after a body has fallen asleep.
- WakeUpEvent = "physics.WakeUpEvent" // Dispatched after a sleeping body has woken up.
- CollideEvent = "physics.CollideEvent" // Dispatched after two bodies collide. This event is dispatched on each of the two bodies involved in the collision.
- )
- // NewBody creates and returns a pointer to a new RigidBody.
- func NewBody(igraphic graphic.IGraphic) *Body {
- b := new(Body)
- b.Graphic = igraphic.GetGraphic()
- // TODO mass setter/getter
- b.mass = 1 // cannon.js default is 0
- if b.mass > 0 {
- b.invMass = 1.0 / b.mass
- } else {
- b.invMass = 0
- }
- b.bodyType = Dynamic // TODO auto set to Static if mass == 0
- // Rotational inertia and related properties
- b.rotInertia = math32.NewMatrix3()
- b.invRotInertia = math32.NewMatrix3()
- b.invRotInertiaEff = math32.NewMatrix3()
- b.invRotInertiaWorld = math32.NewMatrix3()
- b.invRotInertiaWorldEff = math32.NewMatrix3()
- // Position
- pos := b.GetNode().Position()
- b.position = pos.Clone()
- b.prevPosition = pos.Clone()
- b.interpPosition = pos.Clone()
- b.initPosition = pos.Clone()
- // Rotation
- quat := b.GetNode().Quaternion()
- b.quaternion = quat.Clone()
- b.prevQuaternion = quat.Clone()
- b.interpQuaternion = quat.Clone()
- b.initQuaternion = quat.Clone()
- // Linear and angular velocities
- b.velocity = math32.NewVec3()
- b.initVelocity = math32.NewVec3()
- b.angularVelocity = math32.NewVec3()
- b.initAngularVelocity = math32.NewVec3()
- // Force and torque
- b.force = math32.NewVec3()
- b.torque = math32.NewVec3()
- // Damping and factors
- b.linearDamping = 0.01
- b.angularDamping = 0.01
- b.linearFactor = math32.NewVector3(1, 1, 1)
- b.angularFactor = math32.NewVector3(1, 1, 1)
- b.allowSleep = true
- b.sleepState = Awake
- b.sleepSpeedLimit = 0.1
- b.sleepTimeLimit = 1
- b.timeLastSleepy = 0
- b.collisionFilterGroup = 1
- b.collisionFilterMask = -1
- b.wakeUpAfterNarrowphase = false
- b.UpdateMassProperties()
- return b
- }
- func (b *Body) InvMassEff() float32 {
- return b.invMassEff
- }
- func (b *Body) InvRotInertiaWorldEff() *math32.Matrix3 {
- return b.invRotInertiaWorldEff
- }
- func (b *Body) Position() math32.Vector3 {
- return *b.position
- }
- func (b *Body) Quaternion() *math32.Quaternion {
- return b.quaternion
- }
- func (b *Body) SetVelocity(vel *math32.Vector3) {
- b.velocity = vel
- }
- func (b *Body) Velocity() math32.Vector3 {
- return *b.velocity
- }
- func (b *Body) SetAngularVelocity(vel *math32.Vector3) {
- b.angularVelocity = vel
- }
- func (b *Body) AngularVelocity() math32.Vector3 {
- return *b.angularVelocity
- }
- func (b *Body) Force() math32.Vector3 {
- return *b.force
- }
- func (b *Body) Torque() math32.Vector3 {
- return *b.torque
- }
- func (b *Body) LinearDamping() float32 {
- return b.linearDamping
- }
- func (b *Body) AngularDamping() float32 {
- return b.angularDamping
- }
- func (b *Body) LinearFactor() *math32.Vector3 {
- return b.linearFactor
- }
- func (b *Body) AngularFactor() *math32.Vector3 {
- return b.angularFactor
- }
- // WakeUp wakes the body up.
- func (b *Body) WakeUp() {
- state := b.sleepState
- b.sleepState = Awake
- b.wakeUpAfterNarrowphase = false
- if state == Sleeping {
- b.Dispatch(WakeUpEvent, nil)
- }
- }
- // Sleep forces the body to sleep.
- func (b *Body) Sleep() {
- b.sleepState = Sleeping
- b.velocity.Set(0, 0, 0)
- b.angularVelocity.Set(0, 0, 0)
- b.wakeUpAfterNarrowphase = false
- }
- // Called every timestep to update internal sleep timer and change sleep state if needed.
- // time: The world time in seconds
- func (b *Body) SleepTick(time float32) {
- if b.allowSleep {
- speedSquared := b.velocity.LengthSq() + b.angularVelocity.LengthSq()
- speedLimitSquared := math32.Pow(b.sleepSpeedLimit, 2)
- if b.sleepState == Awake && speedSquared < speedLimitSquared {
- b.sleepState = Sleepy
- b.timeLastSleepy = time
- b.Dispatch(SleepyEvent, nil)
- } else if b.sleepState == Sleepy && speedSquared > speedLimitSquared {
- b.WakeUp() // Wake up
- } else if b.sleepState == Sleepy && (time-b.timeLastSleepy) > b.sleepTimeLimit {
- b.Sleep() // Sleeping
- b.Dispatch(SleepEvent, nil)
- }
- }
- }
- // PointToLocal converts a world point to local body frame. TODO maybe move to Node
- func (b *Body) PointToLocal(worldPoint *math32.Vector3) math32.Vector3 {
- return *worldPoint.Clone().Sub(b.position).ApplyQuaternion(b.quaternion.Conjugate())
- }
- // VectorToLocal converts a world vector to local body frame. TODO maybe move to Node
- func (b *Body) VectorToLocal(worldVector *math32.Vector3) math32.Vector3 {
- return *worldVector.Clone().ApplyQuaternion(b.quaternion.Conjugate())
- }
- // PointToWorld converts a local point to world frame. TODO maybe move to Node
- func (b *Body) PointToWorld(localPoint *math32.Vector3) math32.Vector3 {
- return *localPoint.Clone().ApplyQuaternion(b.quaternion).Add(b.position)
- }
- // VectorToWorld converts a local vector to world frame. TODO maybe move to Node
- func (b *Body) VectorToWorld(localVector *math32.Vector3) math32.Vector3 {
- return *localVector.Clone().ApplyQuaternion(b.quaternion)
- }
- // UpdateEffectiveMassProperties
- // If the body is sleeping, it should be immovable and thus have infinite mass during solve.
- // This is solved by having a separate "effective mass" and other "effective" properties
- func (b *Body) UpdateEffectiveMassProperties() {
- if b.sleepState == Sleeping || b.bodyType == Kinematic {
- b.invMassEff = 0
- b.invRotInertiaEff.Zero()
- b.invRotInertiaWorldEff.Zero()
- } else {
- b.invMassEff = b.invMass
- b.invRotInertiaEff.Copy(b.invRotInertia)
- b.invRotInertiaWorldEff.Copy(b.invRotInertiaWorld)
- }
- }
- // UpdateMassProperties
- // Should be called whenever you change the body shape or mass.
- func (b *Body) UpdateMassProperties() {
- // TODO getter of invMass ?
- if b.mass > 0 {
- b.invMass = 1.0 / b.mass
- } else {
- b.invMass = 0
- }
- if b.fixedRotation {
- b.rotInertia.Zero()
- b.invRotInertia.Zero()
- } else {
- *b.rotInertia = b.GetGeometry().RotationalInertia()
- b.invRotInertia.GetInverse(b.rotInertia)
- // Note: rotInertia is always positive definite and thus always invertible
- }
- b.UpdateInertiaWorld(true)
- }
- // Update .inertiaWorld and .invRotInertiaWorld
- func (b *Body) UpdateInertiaWorld(force bool) {
- iRI := b.invRotInertia
- // If rotational inertia M = s*I, where I is identity and s a scalar, then
- // R*M*R' = R*(s*I)*R' = s*R*I*R' = s*R*R' = s*I = M
- // where R is the rotation matrix.
- // In other words, we don't have to do the transformation if all diagonal entries are equal.
- if iRI[0] != iRI[4] || iRI[4] != iRI[8] || force {
- // iRIW = R * iRI * R'
- m1 := math32.NewMatrix3().MakeRotationFromQuaternion(b.quaternion)
- m2 := m1.Clone().Transpose()
- m2.Multiply(iRI)
- b.invRotInertiaWorld.MultiplyMatrices(m2, m1)
- }
- }
- // Apply force to a world point.
- // This could for example be a point on the Body surface.
- // Applying force this way will add to Body.force and Body.torque.
- // relativePoint: A point relative to the center of mass to apply the force on.
- func (b *Body) ApplyForce(force, relativePoint *math32.Vector3) {
- if b.bodyType != Dynamic { // Needed?
- return
- }
- // Add linear force
- b.force.Add(force) // TODO shouldn't rotational momentum be subtracted from linear momentum?
- // Add rotational force
- b.torque.Add(math32.NewVec3().CrossVectors(relativePoint, force))
- }
- // Apply force to a local point in the body.
- // force: The force vector to apply, defined locally in the body frame.
- // localPoint: A local point in the body to apply the force on.
- func (b *Body) ApplyLocalForce(localForce, localPoint *math32.Vector3) {
- if b.bodyType != Dynamic {
- return
- }
- // Transform the force vector to world space
- worldForce := b.VectorToWorld(localForce)
- relativePointWorld := b.VectorToWorld(localPoint)
- b.ApplyForce(&worldForce, &relativePointWorld)
- }
- // Apply impulse to a world point.
- // This could for example be a point on the Body surface.
- // An impulse is a force added to a body during a short period of time (impulse = force * time).
- // Impulses will be added to Body.velocity and Body.angularVelocity.
- // impulse: The amount of impulse to add.
- // relativePoint: A point relative to the center of mass to apply the force on.
- func (b *Body) ApplyImpulse(impulse, relativePoint *math32.Vector3) {
- if b.bodyType != Dynamic {
- return
- }
- // Compute point position relative to the body center
- r := relativePoint
- // Compute produced central impulse velocity
- velo := impulse.Clone().MultiplyScalar(b.invMass)
- // Add linear impulse
- b.velocity.Add(velo)
- // Compute produced rotational impulse velocity
- rotVelo := math32.NewVec3().CrossVectors(r, impulse)
- rotVelo.ApplyMatrix3(b.invRotInertiaWorld)
- // Add rotational Impulse
- b.angularVelocity.Add(rotVelo)
- }
- // Apply locally-defined impulse to a local point in the body.
- // force: The force vector to apply, defined locally in the body frame.
- // localPoint: A local point in the body to apply the force on.
- func (b *Body) ApplyLocalImpulse(localImpulse, localPoint *math32.Vector3) {
- if b.bodyType != Dynamic {
- return
- }
- // Transform the force vector to world space
- worldImpulse := b.VectorToWorld(localImpulse)
- relativePointWorld := b.VectorToWorld(localPoint)
- b.ApplyImpulse(&worldImpulse, &relativePointWorld)
- }
- // Get world velocity of a point in the body.
- func (b *Body) GetVelocityAtWorldPoint(worldPoint *math32.Vector3) *math32.Vector3 {
- r := math32.NewVec3().SubVectors(worldPoint, b.position)
- r.CrossVectors(b.angularVelocity, r)
- r.Add(b.velocity)
- return r
- }
- // Move the body forward in time.
- // dt: Time step
- // quatNormalize: Set to true to normalize the body quaternion
- // quatNormalizeFast: If the quaternion should be normalized using "fast" quaternion normalization
- func (b *Body) Integrate(dt float32, quatNormalize, quatNormalizeFast bool) {
- // Save previous position and rotation
- b.prevPosition.Copy(b.position)
- b.prevQuaternion.Copy(b.quaternion)
- // If static or sleeping - skip
- if !(b.bodyType == Dynamic || b.bodyType == Kinematic) || b.sleepState == Sleeping {
- return
- }
- // Integrate force over mass (acceleration) to obtain estimate for instantaneous velocities
- iMdt := b.invMass * dt
- b.velocity.X += b.force.X * iMdt * b.linearFactor.X
- b.velocity.Y += b.force.Y * iMdt * b.linearFactor.Y
- b.velocity.Z += b.force.Z * iMdt * b.linearFactor.Z
- // Integrate inverse angular mass times torque to obtain estimate for instantaneous angular velocities
- e := b.invRotInertiaWorld
- tx := b.torque.X * b.angularFactor.X
- ty := b.torque.Y * b.angularFactor.Y
- tz := b.torque.Z * b.angularFactor.Z
- b.angularVelocity.X += dt * (e[0]*tx + e[3]*ty + e[6]*tz)
- b.angularVelocity.Y += dt * (e[1]*tx + e[4]*ty + e[7]*tz)
- b.angularVelocity.Z += dt * (e[2]*tx + e[5]*ty + e[8]*tz)
- // Integrate velocity to obtain estimate for position
- b.position.X += b.velocity.X * dt
- b.position.Y += b.velocity.Y * dt
- b.position.Z += b.velocity.Z * dt
- // Integrate angular velocity to obtain estimate for rotation
- ax := b.angularVelocity.X * b.angularFactor.X
- ay := b.angularVelocity.Y * b.angularFactor.Y
- az := b.angularVelocity.Z * b.angularFactor.Z
- bx := b.quaternion.X
- by := b.quaternion.Y
- bz := b.quaternion.Z
- bw := b.quaternion.W
- halfDt := dt * 0.5
- b.quaternion.X += halfDt * (ax*bw + ay*bz - az*by)
- b.quaternion.Y += halfDt * (ay*bw + az*bx - ax*bz)
- b.quaternion.X += halfDt * (az*bw + ax*by - ay*bx)
- b.quaternion.W += halfDt * (-ax*bx - ay*by - az*bz)
- // Normalize quaternion
- if quatNormalize {
- if quatNormalizeFast {
- b.quaternion.NormalizeFast()
- } else {
- b.quaternion.Normalize()
- }
- }
- b.aabbNeedsUpdate = true
- // Update world inertia
- b.UpdateInertiaWorld(false)
- }
|