| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 |
- //
- // Physically Based Shading of a microfacet surface material - Fragment Shader
- // Modified from reference implementation at https://github.com/KhronosGroup/glTF-WebGL-PBR
- //
- // References:
- // [1] Real Shading in Unreal Engine 4
- // http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
- // [2] Physically Based Shading at Disney
- // http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
- // [3] README.md - Environment Maps
- // https://github.com/KhronosGroup/glTF-WebGL-PBR/#environment-maps
- // [4] "An Inexpensive BRDF Model for Physically based Rendering" by Christophe Schlick
- // https://www.cs.virginia.edu/~jdl/bib/appearance/analytic%20models/schlick94b.pdf
- //#extension GL_EXT_shader_texture_lod: enable
- //#extension GL_OES_standard_derivatives : enable
- precision highp float;
- //uniform vec3 u_LightDirection;
- //uniform vec3 u_LightColor;
- //#ifdef USE_IBL
- //uniform samplerCube u_DiffuseEnvSampler;
- //uniform samplerCube u_SpecularEnvSampler;
- //uniform sampler2D u_brdfLUT;
- //#endif
- #ifdef HAS_BASECOLORMAP
- uniform sampler2D u_BaseColorSampler;
- #endif
- #ifdef HAS_NORMALMAP
- uniform sampler2D u_NormalSampler;
- uniform float u_NormalScale;
- #endif
- #ifdef HAS_EMISSIVEMAP
- uniform sampler2D u_EmissiveSampler;
- uniform vec3 u_EmissiveFactor;
- #endif
- #ifdef HAS_METALROUGHNESSMAP
- uniform sampler2D u_MetallicRoughnessSampler;
- #endif
- #ifdef HAS_OCCLUSIONMAP
- uniform sampler2D u_OcclusionSampler;
- uniform float u_OcclusionStrength;
- #endif
- // Material parameters uniform array
- uniform vec4 Material[3];
- // Macros to access elements inside the Material array
- #define uBaseColor Material[0]
- #define uEmissiveColor Material[1]
- #define uMetallicFactor Material[2].x
- #define uRoughnessFactor Material[2].y
- #include <lights>
- // Inputs from vertex shader
- in vec3 Position; // Vertex position in camera coordinates.
- in vec3 Normal; // Vertex normal in camera coordinates.
- in vec3 CamDir; // Direction from vertex to camera
- in vec2 FragTexcoord;
- // Final fragment color
- out vec4 FragColor;
- // Encapsulate the various inputs used by the various functions in the shading equation
- // We store values in this struct to simplify the integration of alternative implementations
- // of the shading terms, outlined in the Readme.MD Appendix.
- struct PBRInfo
- {
- float NdotL; // cos angle between normal and light direction
- float NdotV; // cos angle between normal and view direction
- float NdotH; // cos angle between normal and half vector
- float LdotH; // cos angle between light direction and half vector
- float VdotH; // cos angle between view direction and half vector
- float perceptualRoughness; // roughness value, as authored by the model creator (input to shader)
- float metalness; // metallic value at the surface
- vec3 reflectance0; // full reflectance color (normal incidence angle)
- vec3 reflectance90; // reflectance color at grazing angle
- float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2])
- vec3 diffuseColor; // color contribution from diffuse lighting
- vec3 specularColor; // color contribution from specular lighting
- };
- const float M_PI = 3.141592653589793;
- const float c_MinRoughness = 0.04;
- vec4 SRGBtoLINEAR(vec4 srgbIn) {
- //#ifdef MANUAL_SRGB
- // #ifdef SRGB_FAST_APPROXIMATION
- // vec3 linOut = pow(srgbIn.xyz,vec3(2.2));
- // #else //SRGB_FAST_APPROXIMATION
- // vec3 bLess = step(vec3(0.04045),srgbIn.xyz);
- // vec3 linOut = mix( srgbIn.xyz/vec3(12.92), pow((srgbIn.xyz+vec3(0.055))/vec3(1.055),vec3(2.4)), bLess );
- // #endif //SRGB_FAST_APPROXIMATION
- // return vec4(linOut,srgbIn.w);
- //#else //MANUAL_SRGB
- return srgbIn;
- //#endif //MANUAL_SRGB
- }
- // Find the normal for this fragment, pulling either from a predefined normal map
- // or from the interpolated mesh normal and tangent attributes.
- vec3 getNormal()
- {
- // Retrieve the tangent space matrix
- //#ifndef HAS_TANGENTS
- vec3 pos_dx = dFdx(Position);
- vec3 pos_dy = dFdy(Position);
- vec3 tex_dx = dFdx(vec3(FragTexcoord, 0.0));
- vec3 tex_dy = dFdy(vec3(FragTexcoord, 0.0));
- vec3 t = (tex_dy.t * pos_dx - tex_dx.t * pos_dy) / (tex_dx.s * tex_dy.t - tex_dy.s * tex_dx.t);
- #ifdef HAS_NORMALS
- vec3 ng = normalize(Normal);
- #else
- vec3 ng = cross(pos_dx, pos_dy);
- #endif
- t = normalize(t - ng * dot(ng, t));
- vec3 b = normalize(cross(ng, t));
- mat3 tbn = mat3(t, b, ng);
- //#else // HAS_TANGENTS
- // mat3 tbn = v_TBN;
- //#endif
- #ifdef HAS_NORMALMAP
- vec3 n = texture2D(uNormalSampler, FragTexcoord).rgb;
- n = normalize(tbn * ((2.0 * n - 1.0) * vec3(uNormalScale, uNormalScale, 1.0)));
- #else
- // The tbn matrix is linearly interpolated, so we need to re-normalize
- vec3 n = normalize(tbn[2].xyz);
- #endif
- return n;
- }
- //// Calculation of the lighting contribution from an optional Image Based Light source.
- //// Precomputed Environment Maps are required uniform inputs and are computed as outlined in [1].
- //// See our README.md on Environment Maps [3] for additional discussion.
- //vec3 getIBLContribution(PBRInfo pbrInputs, vec3 n, vec3 reflection)
- //{
- // float mipCount = 9.0; // resolution of 512x512
- // float lod = (pbrInputs.perceptualRoughness * mipCount);
- // // retrieve a scale and bias to F0. See [1], Figure 3
- // vec3 brdf = SRGBtoLINEAR(texture2D(u_brdfLUT, vec2(pbrInputs.NdotV, 1.0 - pbrInputs.perceptualRoughness))).rgb;
- // vec3 diffuseLight = SRGBtoLINEAR(textureCube(u_DiffuseEnvSampler, n)).rgb;
- //
- ////#ifdef USE_TEX_LOD
- //// vec3 specularLight = SRGBtoLINEAR(textureCubeLodEXT(u_SpecularEnvSampler, reflection, lod)).rgb;
- ////#else
- // vec3 specularLight = SRGBtoLINEAR(textureCube(u_SpecularEnvSampler, reflection)).rgb;
- ////#endif
- //
- // vec3 diffuse = diffuseLight * pbrInputs.diffuseColor;
- // vec3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y);
- //
- // // For presentation, this allows us to disable IBL terms
- // diffuse *= u_ScaleIBLAmbient.x;
- // specular *= u_ScaleIBLAmbient.y;
- //
- // return diffuse + specular;
- //}
- // Basic Lambertian diffuse
- // Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog
- // See also [1], Equation 1
- vec3 diffuse(PBRInfo pbrInputs)
- {
- return pbrInputs.diffuseColor / M_PI;
- }
- // The following equation models the Fresnel reflectance term of the spec equation (aka F())
- // Implementation of fresnel from [4], Equation 15
- vec3 specularReflection(PBRInfo pbrInputs)
- {
- return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0);
- }
- // This calculates the specular geometric attenuation (aka G()),
- // where rougher material will reflect less light back to the viewer.
- // This implementation is based on [1] Equation 4, and we adopt their modifications to
- // alphaRoughness as input as originally proposed in [2].
- float geometricOcclusion(PBRInfo pbrInputs)
- {
- float NdotL = pbrInputs.NdotL;
- float NdotV = pbrInputs.NdotV;
- float r = pbrInputs.alphaRoughness;
- float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL)));
- float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV)));
- return attenuationL * attenuationV;
- }
- // The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D())
- // Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz
- // Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3.
- float microfacetDistribution(PBRInfo pbrInputs)
- {
- float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness;
- float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0;
- return roughnessSq / (M_PI * f * f);
- }
- void main() {
- float perceptualRoughness = uRoughnessFactor;
- float metallic = uMetallicFactor;
- #ifdef HAS_METALROUGHNESSMAP
- // Roughness is stored in the 'g' channel, metallic is stored in the 'b' channel.
- // This layout intentionally reserves the 'r' channel for (optional) occlusion map data
- vec4 mrSample = texture2D(uMetallicRoughnessSampler, FragTexcoord);
- perceptualRoughness = mrSample.g * perceptualRoughness;
- metallic = mrSample.b * metallic;
- #endif
- perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0);
- metallic = clamp(metallic, 0.0, 1.0);
- // Roughness is authored as perceptual roughness; as is convention,
- // convert to material roughness by squaring the perceptual roughness [2].
- float alphaRoughness = perceptualRoughness * perceptualRoughness;
- // The albedo may be defined from a base texture or a flat color
- #ifdef HAS_BASECOLORMAP
- vec4 baseColor = SRGBtoLINEAR(texture2D(uBaseColorSampler, FragTexcoord)) * uBaseColor;
- #else
- vec4 baseColor = uBaseColor;
- #endif
- vec3 f0 = vec3(0.04);
- vec3 diffuseColor = baseColor.rgb * (vec3(1.0) - f0);
- diffuseColor *= 1.0 - metallic;
- vec3 specularColor = mix(f0, baseColor.rgb, uMetallicFactor);
- // Compute reflectance.
- float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b);
- // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect.
- // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%.
- float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);
- vec3 specularEnvironmentR0 = specularColor.rgb;
- vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90;
- // TODO These are not currently uniforms - and need to support all kinds of lights!
- vec3 u_LightColor = vec3(1,1,1);
- vec3 u_LightDirection = vec3(1,0,0);
- vec3 n = getNormal(); // normal at surface point
- vec3 v = normalize(CamDir); // Vector from surface point to camera
- vec3 l = normalize(u_LightDirection); // Vector from surface point to light
- vec3 h = normalize(l+v); // Half vector between both l and v
- vec3 reflection = -normalize(reflect(v, n));
- float NdotL = clamp(dot(n, l), 0.001, 1.0);
- float NdotV = abs(dot(n, v)) + 0.001;
- float NdotH = clamp(dot(n, h), 0.0, 1.0);
- float LdotH = clamp(dot(l, h), 0.0, 1.0);
- float VdotH = clamp(dot(v, h), 0.0, 1.0);
- PBRInfo pbrInputs = PBRInfo(
- NdotL,
- NdotV,
- NdotH,
- LdotH,
- VdotH,
- perceptualRoughness,
- metallic,
- specularEnvironmentR0,
- specularEnvironmentR90,
- alphaRoughness,
- diffuseColor,
- specularColor
- );
- // Calculate the shading terms for the microfacet specular shading model
- vec3 F = specularReflection(pbrInputs);
- float G = geometricOcclusion(pbrInputs);
- float D = microfacetDistribution(pbrInputs);
- // Calculation of analytical lighting contribution
- vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs);
- vec3 specContrib = F * G * D / (4.0 * NdotL * NdotV);
- // Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law)
- vec3 color = NdotL * u_LightColor * (diffuseContrib + specContrib);
- // Calculate lighting contribution from image based lighting source (IBL)
- //#ifdef USE_IBL
- // color += getIBLContribution(pbrInputs, n, reflection);
- //#endif
- // Apply optional PBR terms for additional (optional) shading
- #ifdef HAS_OCCLUSIONMAP
- float ao = texture2D(uOcclusionSampler, v_UV).r;
- color = mix(color, color * ao, u_OcclusionStrength);
- #endif
- #ifdef HAS_EMISSIVEMAP
- vec3 emissive = SRGBtoLINEAR(texture2D(u_EmissiveSampler, v_UV)).rgb * u_EmissiveFactor;
- color += emissive;
- #endif
- // Final fragment color
- FragColor = vec4(pow(color,vec3(1.0/2.2)), baseColor.a);
- }
|