| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167 |
- // Code generated by G3NSHADERS. DO NOT EDIT.
- // To regenerate this file install 'g3nshaders' and execute:
- // 'go generate' in this folder.
- package shaders
- const include_attributes_source = `//
- // Vertex attributes
- //
- layout(location = 0) in vec3 VertexPosition;
- layout(location = 1) in vec3 VertexNormal;
- layout(location = 2) in vec3 VertexColor;
- layout(location = 3) in vec2 VertexTexcoord;
- `
- const include_bones_vertex_source = `#ifdef BONE_INFLUENCERS
- #if BONE_INFLUENCERS > 0
- mat4 influence = mBones[int(matricesIndices[0])] * matricesWeights[0];
- #if BONE_INFLUENCERS > 1
- influence += mBones[int(matricesIndices[1])] * matricesWeights[1];
- #if BONE_INFLUENCERS > 2
- influence += mBones[int(matricesIndices[2])] * matricesWeights[2];
- #if BONE_INFLUENCERS > 3
- influence += mBones[int(matricesIndices[3])] * matricesWeights[3];
- // #if BONE_INFLUENCERS > 4
- // influence += mBones[int(matricesIndicesExtra[0])] * matricesWeightsExtra[0];
- // #if BONE_INFLUENCERS > 5
- // influence += mBones[int(matricesIndicesExtra[1])] * matricesWeightsExtra[1];
- // #if BONE_INFLUENCERS > 6
- // influence += mBones[int(matricesIndicesExtra[2])] * matricesWeightsExtra[2];
- // #if BONE_INFLUENCERS > 7
- // influence += mBones[int(matricesIndicesExtra[3])] * matricesWeightsExtra[3];
- // #endif
- // #endif
- // #endif
- // #endif
- #endif
- #endif
- #endif
- finalWorld = finalWorld * influence;
- #endif
- #endif
- `
- const include_bones_vertex_declaration_source = `#ifdef BONE_INFLUENCERS
- #if BONE_INFLUENCERS > 0
- uniform mat4 mBones[TOTAL_BONES];
- in vec4 matricesIndices;
- in vec4 matricesWeights;
- // #if BONE_INFLUENCERS > 4
- // in vec4 matricesIndicesExtra;
- // in vec4 matricesWeightsExtra;
- // #endif
- #endif
- #endif
- `
- const include_lights_source = `//
- // Lights uniforms
- //
- #if AMB_LIGHTS>0
- // Ambient lights color uniform
- uniform vec3 AmbientLightColor[AMB_LIGHTS];
- #endif
- #if DIR_LIGHTS>0
- // Directional lights uniform array. Each directional light uses 2 elements
- uniform vec3 DirLight[2*DIR_LIGHTS];
- // Macros to access elements inside the DirectionalLight uniform array
- #define DirLightColor(a) DirLight[2*a]
- #define DirLightPosition(a) DirLight[2*a+1]
- #endif
- #if POINT_LIGHTS>0
- // Point lights uniform array. Each point light uses 3 elements
- uniform vec3 PointLight[3*POINT_LIGHTS];
- // Macros to access elements inside the PointLight uniform array
- #define PointLightColor(a) PointLight[3*a]
- #define PointLightPosition(a) PointLight[3*a+1]
- #define PointLightLinearDecay(a) PointLight[3*a+2].x
- #define PointLightQuadraticDecay(a) PointLight[3*a+2].y
- #endif
- #if SPOT_LIGHTS>0
- // Spot lights uniforms. Each spot light uses 5 elements
- uniform vec3 SpotLight[5*SPOT_LIGHTS];
- // Macros to access elements inside the PointLight uniform array
- #define SpotLightColor(a) SpotLight[5*a]
- #define SpotLightPosition(a) SpotLight[5*a+1]
- #define SpotLightDirection(a) SpotLight[5*a+2]
- #define SpotLightAngularDecay(a) SpotLight[5*a+3].x
- #define SpotLightCutoffAngle(a) SpotLight[5*a+3].y
- #define SpotLightLinearDecay(a) SpotLight[5*a+3].z
- #define SpotLightQuadraticDecay(a) SpotLight[5*a+4].x
- #endif
- `
- const include_material_source = `//
- // Material properties uniform
- //
- // Material parameters uniform array
- uniform vec3 Material[6];
- // Macros to access elements inside the Material array
- #define MatAmbientColor Material[0]
- #define MatDiffuseColor Material[1]
- #define MatSpecularColor Material[2]
- #define MatEmissiveColor Material[3]
- #define MatShininess Material[4].x
- #define MatOpacity Material[4].y
- #define MatPointSize Material[4].z
- #define MatPointRotationZ Material[5].x
- #if MAT_TEXTURES > 0
- // Texture unit sampler array
- uniform sampler2D MatTexture[MAT_TEXTURES];
- // Texture parameters (3*vec2 per texture)
- uniform vec2 MatTexinfo[3*MAT_TEXTURES];
- // Macros to access elements inside the MatTexinfo array
- #define MatTexOffset(a) MatTexinfo[(3*a)]
- #define MatTexRepeat(a) MatTexinfo[(3*a)+1]
- #define MatTexFlipY(a) bool(MatTexinfo[(3*a)+2].x)
- #define MatTexVisible(a) bool(MatTexinfo[(3*a)+2].y)
- // Alpha compositing (see here: https://ciechanow.ski/alpha-compositing/)
- vec4 Blend(vec4 texMixed, vec4 texColor) {
- texMixed.rgb *= texMixed.a;
- texColor.rgb *= texColor.a;
- texMixed = texColor + texMixed * (1 - texColor.a);
- if (texMixed.a > 0.0) {
- texMixed.rgb /= texMixed.a;
- }
- return texMixed;
- }
- #endif
- `
- const include_morphtarget_vertex_source = `#ifdef MORPHTARGETS
- #include <morphtarget_vertex2> [MORPHTARGETS]
- #endif
- `
- const include_morphtarget_vertex2_source = ` vPosition += MorphPosition{i} * morphTargetInfluences[{i}];
- #ifdef MORPHTARGETS_NORMAL
- vNormal += MorphNormal{i} * morphTargetInfluences[{i}];
- #endif`
- const include_morphtarget_vertex_declaration_source = `#ifdef MORPHTARGETS
- uniform float morphTargetInfluences[MORPHTARGETS];
- #include <morphtarget_vertex_declaration2> [MORPHTARGETS]
- #endif
- `
- const include_morphtarget_vertex_declaration2_source = ` in vec3 MorphPosition{i};
- #ifdef MORPHTARGETS_NORMAL
- in vec3 MorphNormal{i};
- #endif
- `
- const include_phong_model_source = `/***
- phong lighting model
- Parameters:
- position: input vertex position in camera coordinates
- normal: input vertex normal in camera coordinates
- camDir: input camera directions
- matAmbient: input material ambient color
- matDiffuse: input material diffuse color
- ambdiff: output ambient+diffuse color
- spec: output specular color
- Uniforms:
- AmbientLightColor[]
- DiffuseLightColor[]
- DiffuseLightPosition[]
- PointLightColor[]
- PointLightPosition[]
- PointLightLinearDecay[]
- PointLightQuadraticDecay[]
- MatSpecularColor
- MatShininess
- *****/
- void phongModel(vec4 position, vec3 normal, vec3 camDir, vec3 matAmbient, vec3 matDiffuse, out vec3 ambdiff, out vec3 spec) {
- vec3 ambientTotal = vec3(0.0);
- vec3 diffuseTotal = vec3(0.0);
- vec3 specularTotal = vec3(0.0);
- bool noLights = true;
- const float EPS = 0.00001;
- float specular;
- #if AMB_LIGHTS>0
- noLights = false;
- // Ambient lights
- for (int i = 0; i < AMB_LIGHTS; ++i) {
- ambientTotal += AmbientLightColor[i] * matAmbient;
- }
- #endif
- #if DIR_LIGHTS>0
- noLights = false;
- // Directional lights
- for (int i = 0; i < DIR_LIGHTS; ++i) {
- vec3 lightDirection = normalize(DirLightPosition(i)); // Vector from fragment to light source
- float dotNormal = dot(lightDirection, normal); // Dot product between light direction and fragment normal
- if (dotNormal > EPS) { // If the fragment is lit
- diffuseTotal += DirLightColor(i) * matDiffuse * dotNormal;
- #ifdef BLINN
- specular = pow(max(dot(normal, normalize(lightDirection + camDir)), 0.0), MatShininess);
- #else
- specular = pow(max(dot(reflect(-lightDirection, normal), camDir), 0.0), MatShininess);
- #endif
- specularTotal += DirLightColor(i) * MatSpecularColor * specular;
- }
- }
- #endif
- #if POINT_LIGHTS>0
- noLights = false;
- // Point lights
- for (int i = 0; i < POINT_LIGHTS; ++i) {
- vec3 lightDirection = PointLightPosition(i) - vec3(position); // Vector from fragment to light source
- float lightDistance = length(lightDirection); // Distance from fragment to light source
- lightDirection = lightDirection / lightDistance; // Normalize lightDirection
- float dotNormal = dot(lightDirection, normal); // Dot product between light direction and fragment normal
- if (dotNormal > EPS) { // If the fragment is lit
- float attenuation = 1.0 / (1.0 + lightDistance * (PointLightLinearDecay(i) + PointLightQuadraticDecay(i) * lightDistance));
- vec3 attenuatedColor = PointLightColor(i) * attenuation;
- diffuseTotal += attenuatedColor * matDiffuse * dotNormal;
- #ifdef BLINN
- specular = pow(max(dot(normal, normalize(lightDirection + camDir)), 0.0), MatShininess);
- #else
- specular = pow(max(dot(reflect(-lightDirection, normal), camDir), 0.0), MatShininess);
- #endif
- specularTotal += attenuatedColor * MatSpecularColor * specular;
- }
- }
- #endif
- #if SPOT_LIGHTS>0
- noLights = false;
- for (int i = 0; i < SPOT_LIGHTS; ++i) {
- // Calculates the direction and distance from the current vertex to this spot light.
- vec3 lightDirection = SpotLightPosition(i) - vec3(position); // Vector from fragment to light source
- float lightDistance = length(lightDirection); // Distance from fragment to light source
- lightDirection = lightDirection / lightDistance; // Normalize lightDirection
- float angleDot = dot(-lightDirection, SpotLightDirection(i));
- float angle = acos(angleDot);
- float cutoff = radians(clamp(SpotLightCutoffAngle(i), 0.0, 90.0));
- if (angle < cutoff) { // Check if fragment is inside spotlight beam
- float dotNormal = dot(lightDirection, normal); // Dot product between light direction and fragment normal
- if (dotNormal > EPS) { // If the fragment is lit
- float attenuation = 1.0 / (1.0 + lightDistance * (SpotLightLinearDecay(i) + SpotLightQuadraticDecay(i) * lightDistance));
- float spotFactor = pow(angleDot, SpotLightAngularDecay(i));
- vec3 attenuatedColor = SpotLightColor(i) * attenuation * spotFactor;
- diffuseTotal += attenuatedColor * matDiffuse * dotNormal;
- #ifdef BLINN
- specular = pow(max(dot(normal, normalize(lightDirection + camDir)), 0.0), MatShininess);
- #else
- specular = pow(max(dot(reflect(-lightDirection, normal), camDir), 0.0), MatShininess);
- #endif
- specularTotal += attenuatedColor * MatSpecularColor * specular;
- }
- }
- }
- #endif
- if (noLights) {
- diffuseTotal = matDiffuse;
- }
- // Sets output colors
- ambdiff = ambientTotal + MatEmissiveColor + diffuseTotal;
- spec = specularTotal;
- }
- `
- const basic_fragment_source = `precision highp float;
- in vec3 Color;
- out vec4 FragColor;
- void main() {
- FragColor = vec4(Color, 1.0);
- }
- `
- const basic_vertex_source = `#include <attributes>
- // Model uniforms
- uniform mat4 MVP;
- // Final output color for fragment shader
- out vec3 Color;
- void main() {
- Color = VertexColor;
- gl_Position = MVP * vec4(VertexPosition, 1.0);
- }
- `
- const panel_fragment_source = `precision highp float;
- // Texture uniforms
- uniform sampler2D MatTexture;
- uniform vec2 MatTexinfo[3];
- // Macros to access elements inside the MatTexinfo array
- #define MatTexOffset MatTexinfo[0]
- #define MatTexRepeat MatTexinfo[1]
- #define MatTexFlipY bool(MatTexinfo[2].x) // not used
- #define MatTexVisible bool(MatTexinfo[2].y) // not used
- // Inputs from vertex shader
- in vec2 FragTexcoord;
- // Input uniform
- uniform vec4 Panel[8];
- #define Bounds Panel[0] // panel bounds in texture coordinates
- #define Border Panel[1] // panel border in texture coordinates
- #define Padding Panel[2] // panel padding in texture coordinates
- #define Content Panel[3] // panel content area in texture coordinates
- #define BorderColor Panel[4] // panel border color
- #define PaddingColor Panel[5] // panel padding color
- #define ContentColor Panel[6] // panel content color
- #define TextureValid bool(Panel[7].x) // texture valid flag
- // Output
- out vec4 FragColor;
- /***
- * Checks if current fragment texture coordinate is inside the
- * supplied rectangle in texture coordinates:
- * rect[0] - position x [0,1]
- * rect[1] - position y [0,1]
- * rect[2] - width [0,1]
- * rect[3] - height [0,1]
- */
- bool checkRect(vec4 rect) {
- if (FragTexcoord.x < rect[0]) {
- return false;
- }
- if (FragTexcoord.x > rect[0] + rect[2]) {
- return false;
- }
- if (FragTexcoord.y < rect[1]) {
- return false;
- }
- if (FragTexcoord.y > rect[1] + rect[3]) {
- return false;
- }
- return true;
- }
- void main() {
- // Discard fragment outside of received bounds
- // Bounds[0] - xmin
- // Bounds[1] - ymin
- // Bounds[2] - xmax
- // Bounds[3] - ymax
- if (FragTexcoord.x <= Bounds[0] || FragTexcoord.x >= Bounds[2]) {
- discard;
- }
- if (FragTexcoord.y <= Bounds[1] || FragTexcoord.y >= Bounds[3]) {
- discard;
- }
- // Check if fragment is inside content area
- if (checkRect(Content)) {
- // If no texture, the color will be the material color.
- vec4 color = ContentColor;
- if (TextureValid) {
- // Adjust texture coordinates to fit texture inside the content area
- vec2 offset = vec2(-Content[0], -Content[1]);
- vec2 factor = vec2(1.0/Content[2], 1.0/Content[3]);
- vec2 texcoord = (FragTexcoord + offset) * factor;
- vec4 texColor = texture(MatTexture, texcoord * MatTexRepeat + MatTexOffset);
- // Mix content color with texture color.
- // Note that doing a simple linear interpolation (e.g. using mix()) is not correct!
- // The right formula can be found here: https://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
- // For a more in-depth discussion: http://apoorvaj.io/alpha-compositing-opengl-blending-and-premultiplied-alpha.html#toc4
- // Another great discussion here: https://ciechanow.ski/alpha-compositing/
- // Alpha premultiply the content color
- vec4 contentPre = ContentColor;
- contentPre.rgb *= contentPre.a;
- // Alpha premultiply the content color
- vec4 texPre = texColor;
- texPre.rgb *= texPre.a;
- // Combine colors to obtain the alpha premultiplied final color
- color = texPre + contentPre * (1.0 - texPre.a);
- // Un-alpha-premultiply
- color.rgb /= color.a;
- }
- FragColor = color;
- return;
- }
- // Checks if fragment is inside paddings area
- if (checkRect(Padding)) {
- FragColor = PaddingColor;
- return;
- }
- // Checks if fragment is inside borders area
- if (checkRect(Border)) {
- FragColor = BorderColor;
- return;
- }
- // Fragment is in margins area (always transparent)
- FragColor = vec4(1,1,1,0);
- }
- `
- const panel_vertex_source = `#include <attributes>
- // Model uniforms
- uniform mat4 ModelMatrix;
- // Outputs for fragment shader
- out vec2 FragTexcoord;
- void main() {
- // Always flip texture coordinates
- vec2 texcoord = VertexTexcoord;
- texcoord.y = 1.0 - texcoord.y;
- FragTexcoord = texcoord;
- // Set position
- vec4 pos = vec4(VertexPosition.xyz, 1);
- gl_Position = ModelMatrix * pos;
- }
- `
- const physical_fragment_source = `//
- // Physically Based Shading of a microfacet surface material - Fragment Shader
- // Modified from reference implementation at https://github.com/KhronosGroup/glTF-WebGL-PBR
- //
- // References:
- // [1] Real Shading in Unreal Engine 4
- // http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
- // [2] Physically Based Shading at Disney
- // http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
- // [3] README.md - Environment Maps
- // https://github.com/KhronosGroup/glTF-WebGL-PBR/#environment-maps
- // [4] "An Inexpensive BRDF Model for Physically based Rendering" by Christophe Schlick
- // https://www.cs.virginia.edu/~jdl/bib/appearance/analytic%20models/schlick94b.pdf
- //#extension GL_EXT_shader_texture_lod: enable
- //#extension GL_OES_standard_derivatives : enable
- precision highp float;
- //uniform vec3 u_LightDirection;
- //uniform vec3 u_LightColor;
- //#ifdef USE_IBL
- //uniform samplerCube u_DiffuseEnvSampler;
- //uniform samplerCube u_SpecularEnvSampler;
- //uniform sampler2D u_brdfLUT;
- //#endif
- #ifdef HAS_BASECOLORMAP
- uniform sampler2D uBaseColorSampler;
- #endif
- #ifdef HAS_METALROUGHNESSMAP
- uniform sampler2D uMetallicRoughnessSampler;
- #endif
- #ifdef HAS_NORMALMAP
- uniform sampler2D uNormalSampler;
- //uniform float uNormalScale;
- #endif
- #ifdef HAS_EMISSIVEMAP
- uniform sampler2D uEmissiveSampler;
- #endif
- #ifdef HAS_OCCLUSIONMAP
- uniform sampler2D uOcclusionSampler;
- uniform float uOcclusionStrength;
- #endif
- // Material parameters uniform array
- uniform vec4 Material[3];
- // Macros to access elements inside the Material array
- #define uBaseColor Material[0]
- #define uEmissiveColor Material[1]
- #define uMetallicFactor Material[2].x
- #define uRoughnessFactor Material[2].y
- #include <lights>
- // Inputs from vertex shader
- in vec3 Position; // Vertex position in camera coordinates.
- in vec3 Normal; // Vertex normal in camera coordinates.
- in vec3 CamDir; // Direction from vertex to camera
- in vec2 FragTexcoord;
- // Final fragment color
- out vec4 FragColor;
- // Encapsulate the various inputs used by the various functions in the shading equation
- // We store values in this struct to simplify the integration of alternative implementations
- // of the shading terms, outlined in the Readme.MD Appendix.
- struct PBRLightInfo
- {
- float NdotL; // cos angle between normal and light direction
- float NdotV; // cos angle between normal and view direction
- float NdotH; // cos angle between normal and half vector
- float LdotH; // cos angle between light direction and half vector
- float VdotH; // cos angle between view direction and half vector
- };
- struct PBRInfo
- {
- float perceptualRoughness; // roughness value, as authored by the model creator (input to shader)
- float metalness; // metallic value at the surface
- vec3 reflectance0; // full reflectance color (normal incidence angle)
- vec3 reflectance90; // reflectance color at grazing angle
- float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2])
- vec3 diffuseColor; // color contribution from diffuse lighting
- vec3 specularColor; // color contribution from specular lighting
- };
- const float M_PI = 3.141592653589793;
- const float c_MinRoughness = 0.04;
- vec4 SRGBtoLINEAR(vec4 srgbIn) {
- //#ifdef MANUAL_SRGB
- // #ifdef SRGB_FAST_APPROXIMATION
- // vec3 linOut = pow(srgbIn.xyz,vec3(2.2));
- // #else //SRGB_FAST_APPROXIMATION
- vec3 bLess = step(vec3(0.04045),srgbIn.xyz);
- vec3 linOut = mix( srgbIn.xyz/vec3(12.92), pow((srgbIn.xyz+vec3(0.055))/vec3(1.055),vec3(2.4)), bLess );
- // #endif //SRGB_FAST_APPROXIMATION
- return vec4(linOut,srgbIn.w);
- //#else //MANUAL_SRGB
- // return srgbIn;
- //#endif //MANUAL_SRGB
- }
- // Find the normal for this fragment, pulling either from a predefined normal map
- // or from the interpolated mesh normal and tangent attributes.
- vec3 getNormal()
- {
- // Retrieve the tangent space matrix
- //#ifndef HAS_TANGENTS
- vec3 pos_dx = dFdx(Position);
- vec3 pos_dy = dFdy(Position);
- vec3 tex_dx = dFdx(vec3(FragTexcoord, 0.0));
- vec3 tex_dy = dFdy(vec3(FragTexcoord, 0.0));
- vec3 t = (tex_dy.t * pos_dx - tex_dx.t * pos_dy) / (tex_dx.s * tex_dy.t - tex_dy.s * tex_dx.t);
- //#ifdef HAS_NORMALS
- vec3 ng = normalize(Normal);
- //#else
- // vec3 ng = cross(pos_dx, pos_dy);
- //#endif
- t = normalize(t - ng * dot(ng, t));
- vec3 b = normalize(cross(ng, t));
- mat3 tbn = mat3(t, b, ng);
- //#else // HAS_TANGENTS
- // mat3 tbn = v_TBN;
- //#endif
- #ifdef HAS_NORMALMAP
- float uNormalScale = 1.0;
- vec3 n = texture(uNormalSampler, FragTexcoord).rgb;
- n = normalize(tbn * ((2.0 * n - 1.0) * vec3(uNormalScale, uNormalScale, 1.0)));
- #else
- // The tbn matrix is linearly interpolated, so we need to re-normalize
- vec3 n = normalize(tbn[2].xyz);
- #endif
- return n;
- }
- // Calculation of the lighting contribution from an optional Image Based Light source.
- // Precomputed Environment Maps are required uniform inputs and are computed as outlined in [1].
- // See our README.md on Environment Maps [3] for additional discussion.
- vec3 getIBLContribution(PBRInfo pbrInputs, PBRLightInfo pbrLight, vec3 n, vec3 reflection)
- {
- float mipCount = 9.0; // resolution of 512x512
- float lod = (pbrInputs.perceptualRoughness * mipCount);
- // retrieve a scale and bias to F0. See [1], Figure 3
- vec3 brdf = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(texture(u_brdfLUT, vec2(pbrLight.NdotV, 1.0 - pbrInputs.perceptualRoughness))).rgb;
- vec3 diffuseLight = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(textureCube(u_DiffuseEnvSampler, n)).rgb;
- //#ifdef USE_TEX_LOD
- // vec3 specularLight = SRGBtoLINEAR(textureCubeLodEXT(u_SpecularEnvSampler, reflection, lod)).rgb;
- //#else
- vec3 specularLight = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(textureCube(u_SpecularEnvSampler, reflection)).rgb;
- //#endif
- vec3 diffuse = diffuseLight * pbrInputs.diffuseColor;
- vec3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y);
- // For presentation, this allows us to disable IBL terms
- // diffuse *= u_ScaleIBLAmbient.x;
- // specular *= u_ScaleIBLAmbient.y;
- return diffuse + specular;
- }
- // Basic Lambertian diffuse
- // Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog
- // See also [1], Equation 1
- vec3 diffuse(PBRInfo pbrInputs)
- {
- return pbrInputs.diffuseColor / M_PI;
- }
- // The following equation models the Fresnel reflectance term of the spec equation (aka F())
- // Implementation of fresnel from [4], Equation 15
- vec3 specularReflection(PBRInfo pbrInputs, PBRLightInfo pbrLight)
- {
- return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrLight.VdotH, 0.0, 1.0), 5.0);
- }
- // This calculates the specular geometric attenuation (aka G()),
- // where rougher material will reflect less light back to the viewer.
- // This implementation is based on [1] Equation 4, and we adopt their modifications to
- // alphaRoughness as input as originally proposed in [2].
- float geometricOcclusion(PBRInfo pbrInputs, PBRLightInfo pbrLight)
- {
- float NdotL = pbrLight.NdotL;
- float NdotV = pbrLight.NdotV;
- float r = pbrInputs.alphaRoughness;
- float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL)));
- float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV)));
- return attenuationL * attenuationV;
- }
- // The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D())
- // Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz
- // Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3.
- float microfacetDistribution(PBRInfo pbrInputs, PBRLightInfo pbrLight)
- {
- float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness;
- float f = (pbrLight.NdotH * roughnessSq - pbrLight.NdotH) * pbrLight.NdotH + 1.0;
- return roughnessSq / (M_PI * f * f);
- }
- vec3 pbrModel(PBRInfo pbrInputs, vec3 lightColor, vec3 lightDir) {
- vec3 n = getNormal(); // normal at surface point
- vec3 v = normalize(CamDir); // Vector from surface point to camera
- vec3 l = normalize(lightDir); // Vector from surface point to light
- vec3 h = normalize(l+v); // Half vector between both l and v
- vec3 reflection = -normalize(reflect(v, n));
- float NdotL = clamp(dot(n, l), 0.001, 1.0);
- float NdotV = abs(dot(n, v)) + 0.001;
- float NdotH = clamp(dot(n, h), 0.0, 1.0);
- float LdotH = clamp(dot(l, h), 0.0, 1.0);
- float VdotH = clamp(dot(v, h), 0.0, 1.0);
- PBRLightInfo pbrLight = PBRLightInfo(
- NdotL,
- NdotV,
- NdotH,
- LdotH,
- VdotH
- );
- // Calculate the shading terms for the microfacet specular shading model
- vec3 F = specularReflection(pbrInputs, pbrLight);
- float G = geometricOcclusion(pbrInputs, pbrLight);
- float D = microfacetDistribution(pbrInputs, pbrLight);
- // Calculation of analytical lighting contribution
- vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs);
- vec3 specContrib = F * G * D / (4.0 * NdotL * NdotV);
- // Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law)
- vec3 color = NdotL * lightColor * (diffuseContrib + specContrib);
- return color;
- }
- void main() {
- float perceptualRoughness = uRoughnessFactor;
- float metallic = uMetallicFactor;
- #ifdef HAS_METALROUGHNESSMAP
- // Roughness is stored in the 'g' channel, metallic is stored in the 'b' channel.
- // This layout intentionally reserves the 'r' channel for (optional) occlusion map data
- vec4 mrSample = texture(uMetallicRoughnessSampler, FragTexcoord);
- perceptualRoughness = mrSample.g * perceptualRoughness;
- metallic = mrSample.b * metallic;
- #endif
- perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0);
- metallic = clamp(metallic, 0.0, 1.0);
- // Roughness is authored as perceptual roughness; as is convention,
- // convert to material roughness by squaring the perceptual roughness [2].
- float alphaRoughness = perceptualRoughness * perceptualRoughness;
- // The albedo may be defined from a base texture or a flat color
- #ifdef HAS_BASECOLORMAP
- vec4 baseColor = SRGBtoLINEAR(texture(uBaseColorSampler, FragTexcoord)) * uBaseColor;
- #else
- vec4 baseColor = uBaseColor;
- #endif
- vec3 f0 = vec3(0.04);
- vec3 diffuseColor = baseColor.rgb * (vec3(1.0) - f0);
- diffuseColor *= 1.0 - metallic;
- vec3 specularColor = mix(f0, baseColor.rgb, uMetallicFactor);
- // Compute reflectance.
- float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b);
- // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect.
- // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflectance to 0%.
- float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);
- vec3 specularEnvironmentR0 = specularColor.rgb;
- vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90;
- PBRInfo pbrInputs = PBRInfo(
- perceptualRoughness,
- metallic,
- specularEnvironmentR0,
- specularEnvironmentR90,
- alphaRoughness,
- diffuseColor,
- specularColor
- );
- // vec3 normal = getNormal();
- vec3 color = vec3(0.0);
- #if AMB_LIGHTS>0
- // Ambient lights
- for (int i = 0; i < AMB_LIGHTS; i++) {
- color += AmbientLightColor[i] * pbrInputs.diffuseColor;
- }
- #endif
- #if DIR_LIGHTS>0
- // Directional lights
- for (int i = 0; i < DIR_LIGHTS; i++) {
- // Diffuse reflection
- // DirLightPosition is the direction of the current light
- vec3 lightDirection = normalize(DirLightPosition(i));
- // PBR
- color += pbrModel(pbrInputs, DirLightColor(i), lightDirection);
- }
- #endif
- #if POINT_LIGHTS>0
- // Point lights
- for (int i = 0; i < POINT_LIGHTS; i++) {
- // Common calculations
- // Calculates the direction and distance from the current vertex to this point light.
- vec3 lightDirection = PointLightPosition(i) - vec3(Position);
- float lightDistance = length(lightDirection);
- // Normalizes the lightDirection
- lightDirection = lightDirection / lightDistance;
- // Calculates the attenuation due to the distance of the light
- float attenuation = 1.0 / (1.0 + PointLightLinearDecay(i) * lightDistance +
- PointLightQuadraticDecay(i) * lightDistance * lightDistance);
- vec3 attenuatedColor = PointLightColor(i) * attenuation;
- // PBR
- color += pbrModel(pbrInputs, attenuatedColor, lightDirection);
- }
- #endif
- #if SPOT_LIGHTS>0
- for (int i = 0; i < SPOT_LIGHTS; i++) {
- // Calculates the direction and distance from the current vertex to this spot light.
- vec3 lightDirection = SpotLightPosition(i) - vec3(Position);
- float lightDistance = length(lightDirection);
- lightDirection = lightDirection / lightDistance;
- // Calculates the attenuation due to the distance of the light
- float attenuation = 1.0 / (1.0 + SpotLightLinearDecay(i) * lightDistance +
- SpotLightQuadraticDecay(i) * lightDistance * lightDistance);
- // Calculates the angle between the vertex direction and spot direction
- // If this angle is greater than the cutoff the spotlight will not contribute
- // to the final color.
- float angle = acos(dot(-lightDirection, SpotLightDirection(i)));
- float cutoff = radians(clamp(SpotLightCutoffAngle(i), 0.0, 90.0));
- if (angle < cutoff) {
- float spotFactor = pow(dot(-lightDirection, SpotLightDirection(i)), SpotLightAngularDecay(i));
- vec3 attenuatedColor = SpotLightColor(i) * attenuation * spotFactor;
- // PBR
- color += pbrModel(pbrInputs, attenuatedColor, lightDirection);
- }
- }
- #endif
- // Calculate lighting contribution from image based lighting source (IBL)
- //#ifdef USE_IBL
- // color += getIBLContribution(pbrInputs, n, reflection);
- //#endif
- // Apply optional PBR terms for additional (optional) shading
- #ifdef HAS_OCCLUSIONMAP
- float ao = texture(uOcclusionSampler, FragTexcoord).r;
- color = mix(color, color * ao, 1.0);//, uOcclusionStrength);
- #endif
- #ifdef HAS_EMISSIVEMAP
- vec3 emissive = SRGBtoLINEAR(texture(uEmissiveSampler, FragTexcoord)).rgb * vec3(uEmissiveColor);
- #else
- vec3 emissive = vec3(uEmissiveColor);
- #endif
- color += emissive;
- // Base Color
- // FragColor = baseColor;
- // Normal
- // FragColor = vec4(n, 1.0);
- // Emissive Color
- // FragColor = vec4(emissive, 1.0);
- // F
- // color = F;
- // G
- // color = vec3(G);
- // D
- // color = vec3(D);
- // Specular
- // color = specContrib;
- // Diffuse
- // color = diffuseContrib;
- // Roughness
- // color = vec3(perceptualRoughness);
- // Metallic
- // color = vec3(metallic);
- // Final fragment color
- FragColor = vec4(pow(color,vec3(1.0/2.2)), baseColor.a);
- }
- `
- const physical_vertex_source = `//
- // Physically Based Shading of a microfacet surface material - Vertex Shader
- // Modified from reference implementation at https://github.com/KhronosGroup/glTF-WebGL-PBR
- //
- #include <attributes>
- // Model uniforms
- uniform mat4 ModelViewMatrix;
- uniform mat3 NormalMatrix;
- uniform mat4 MVP;
- #include <morphtarget_vertex_declaration>
- #include <bones_vertex_declaration>
- // Output variables for Fragment shader
- out vec3 Position;
- out vec3 Normal;
- out vec3 CamDir;
- out vec2 FragTexcoord;
- void main() {
- // Transform this vertex position to camera coordinates.
- Position = vec3(ModelViewMatrix * vec4(VertexPosition, 1.0));
- // Transform this vertex normal to camera coordinates.
- Normal = normalize(NormalMatrix * VertexNormal);
- // Calculate the direction vector from the vertex to the camera
- // The camera is at 0,0,0
- CamDir = normalize(-Position.xyz);
- // Output texture coordinates to fragment shader
- FragTexcoord = VertexTexcoord;
- vec3 vPosition = VertexPosition;
- mat4 finalWorld = mat4(1.0);
- #include <morphtarget_vertex>
- #include <bones_vertex>
- gl_Position = MVP * finalWorld * vec4(vPosition, 1.0);
- }
- `
- const point_fragment_source = `precision highp float;
- #include <material>
- // Inputs from vertex shader
- in vec3 Color;
- flat in mat2 Rotation;
- // Output
- out vec4 FragColor;
- void main() {
- // Compute final texture color
- vec4 texMixed = vec4(1);
- #if MAT_TEXTURES > 0
- vec2 pointCoord = Rotation * gl_PointCoord - vec2(0.5) + vec2(0.5);
- bool firstTex = true;
- if (MatTexVisible(0)) {
- vec4 texColor = texture(MatTexture[0], pointCoord * MatTexRepeat(0) + MatTexOffset(0));
- if (firstTex) {
- texMixed = texColor;
- firstTex = false;
- } else {
- texMixed = Blend(texMixed, texColor);
- }
- }
- #if MAT_TEXTURES > 1
- if (MatTexVisible(1)) {
- vec4 texColor = texture(MatTexture[1], pointCoord * MatTexRepeat(1) + MatTexOffset(1));
- if (firstTex) {
- texMixed = texColor;
- firstTex = false;
- } else {
- texMixed = Blend(texMixed, texColor);
- }
- }
- #if MAT_TEXTURES > 2
- if (MatTexVisible(2)) {
- vec4 texColor = texture(MatTexture[2], pointCoord * MatTexRepeat(2) + MatTexOffset(2));
- if (firstTex) {
- texMixed = texColor;
- firstTex = false;
- } else {
- texMixed = Blend(texMixed, texColor);
- }
- }
- #endif
- #endif
- #endif
- // Generates final color
- FragColor = min(vec4(Color, MatOpacity) * texMixed, vec4(1));
- }
- `
- const point_vertex_source = `#include <attributes>
- // Model uniforms
- uniform mat4 MVP;
- uniform mat4 MV;
- // Material uniforms
- #include <material>
- // Outputs for fragment shader
- out vec3 Color;
- flat out mat2 Rotation;
- void main() {
- // Rotation matrix for fragment shader
- float rotSin = sin(MatPointRotationZ);
- float rotCos = cos(MatPointRotationZ);
- Rotation = mat2(rotCos, rotSin, - rotSin, rotCos);
- // Sets the vertex position
- vec4 pos = MVP * vec4(VertexPosition, 1.0);
- gl_Position = pos;
- // Sets the size of the rasterized point decreasing with distance
- vec4 posMV = MV * vec4(VertexPosition, 1.0);
- gl_PointSize = MatPointSize / -posMV.z;
- // Outputs color
- Color = MatEmissiveColor;
- }
- `
- const standard_fragment_source = `precision highp float;
- // Inputs from vertex shader
- in vec4 Position; // Fragment position in camera coordinates
- in vec3 Normal; // Fragment normal in camera coordinates
- in vec2 FragTexcoord; // Fragment texture coordinates
- #include <lights>
- #include <material>
- #include <phong_model>
- // Final fragment color
- out vec4 FragColor;
- void main() {
- // Compute final texture color
- vec4 texMixed = vec4(1);
- #if MAT_TEXTURES > 0
- bool firstTex = true;
- if (MatTexVisible(0)) {
- vec4 texColor = texture(MatTexture[0], FragTexcoord * MatTexRepeat(0) + MatTexOffset(0));
- if (firstTex) {
- texMixed = texColor;
- firstTex = false;
- } else {
- texMixed = Blend(texMixed, texColor);
- }
- }
- #if MAT_TEXTURES > 1
- if (MatTexVisible(1)) {
- vec4 texColor = texture(MatTexture[1], FragTexcoord * MatTexRepeat(1) + MatTexOffset(1));
- if (firstTex) {
- texMixed = texColor;
- firstTex = false;
- } else {
- texMixed = Blend(texMixed, texColor);
- }
- }
- #if MAT_TEXTURES > 2
- if (MatTexVisible(2)) {
- vec4 texColor = texture(MatTexture[2], FragTexcoord * MatTexRepeat(2) + MatTexOffset(2));
- if (firstTex) {
- texMixed = texColor;
- firstTex = false;
- } else {
- texMixed = Blend(texMixed, texColor);
- }
- }
- #endif
- #endif
- #endif
- // Combine material with texture colors
- vec4 matDiffuse = vec4(MatDiffuseColor, MatOpacity) * texMixed;
- vec4 matAmbient = vec4(MatAmbientColor, MatOpacity) * texMixed;
- // Normalize interpolated normal as it may have shrinked
- vec3 fragNormal = normalize(Normal);
- // Calculate the direction vector from the fragment to the camera (origin)
- vec3 camDir = normalize(-Position.xyz);
- // Workaround for gl_FrontFacing
- vec3 fdx = dFdx(Position.xyz);
- vec3 fdy = dFdy(Position.xyz);
- vec3 faceNormal = normalize(cross(fdx,fdy));
- if (dot(fragNormal, faceNormal) < 0.0) { // Back-facing
- fragNormal = -fragNormal;
- }
- // Calculates the Ambient+Diffuse and Specular colors for this fragment using the Phong model.
- vec3 Ambdiff, Spec;
- phongModel(Position, fragNormal, camDir, vec3(matAmbient), vec3(matDiffuse), Ambdiff, Spec);
- // Final fragment color
- FragColor = min(vec4(Ambdiff + Spec, matDiffuse.a), vec4(1.0));
- }
- `
- const standard_vertex_source = `#include <attributes>
- // Model uniforms
- uniform mat4 ModelViewMatrix;
- uniform mat3 NormalMatrix;
- uniform mat4 MVP;
- #include <material>
- #include <morphtarget_vertex_declaration>
- #include <bones_vertex_declaration>
- // Output variables for Fragment shader
- out vec4 Position;
- out vec3 Normal;
- out vec2 FragTexcoord;
- void main() {
- // Transform vertex position to camera coordinates
- Position = ModelViewMatrix * vec4(VertexPosition, 1.0);
- // Transform vertex normal to camera coordinates
- Normal = normalize(NormalMatrix * VertexNormal);
- vec2 texcoord = VertexTexcoord;
- #if MAT_TEXTURES > 0
- // Flip texture coordinate Y if requested.
- if (MatTexFlipY(0)) {
- texcoord.y = 1.0 - texcoord.y;
- }
- #endif
- FragTexcoord = texcoord;
- vec3 vPosition = VertexPosition;
- mat4 finalWorld = mat4(1.0);
- #include <morphtarget_vertex>
- #include <bones_vertex>
- // Output projected and transformed vertex position
- gl_Position = MVP * finalWorld * vec4(vPosition, 1.0);
- }
- `
- // Maps include name with its source code
- var includeMap = map[string]string{
- "attributes": include_attributes_source,
- "bones_vertex": include_bones_vertex_source,
- "bones_vertex_declaration": include_bones_vertex_declaration_source,
- "lights": include_lights_source,
- "material": include_material_source,
- "morphtarget_vertex": include_morphtarget_vertex_source,
- "morphtarget_vertex2": include_morphtarget_vertex2_source,
- "morphtarget_vertex_declaration": include_morphtarget_vertex_declaration_source,
- "morphtarget_vertex_declaration2": include_morphtarget_vertex_declaration2_source,
- "phong_model": include_phong_model_source,
- }
- // Maps shader name with its source code
- var shaderMap = map[string]string{
- "basic_fragment": basic_fragment_source,
- "basic_vertex": basic_vertex_source,
- "panel_fragment": panel_fragment_source,
- "panel_vertex": panel_vertex_source,
- "physical_fragment": physical_fragment_source,
- "physical_vertex": physical_vertex_source,
- "point_fragment": point_fragment_source,
- "point_vertex": point_vertex_source,
- "standard_fragment": standard_fragment_source,
- "standard_vertex": standard_vertex_source,
- }
- // Maps program name with Proginfo struct with shaders names
- var programMap = map[string]ProgramInfo{
- "basic": {"basic_vertex", "basic_fragment", ""},
- "panel": {"panel_vertex", "panel_fragment", ""},
- "physical": {"physical_vertex", "physical_fragment", ""},
- "point": {"point_vertex", "point_fragment", ""},
- "standard": {"standard_vertex", "standard_fragment", ""},
- }
|