| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- // Copyright 2016 The G3N Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package math32
- import ()
- // Plane represents a plane in 3D space by its normal vector and a constant.
- // When the the normal vector is the unit vector the constant is the distance from the origin.
- type Plane struct {
- normal Vector3
- constant float32
- }
- // NewPlane creates and returns a new plane from a normal vector and a constant.
- func NewPlane(normal *Vector3, constant float32) *Plane {
- p := new(Plane)
- if normal != nil {
- p.normal = *normal
- }
- p.constant = constant
- return p
- }
- // Set sets this plane normal vector and constant.
- // Returns pointer to this updated plane.
- func (p *Plane) Set(normal *Vector3, constant float32) *Plane {
- p.normal = *normal
- p.constant = constant
- return p
- }
- // SetComponents sets this plane normal vector components and constant.
- // Returns pointer to this updated plane.
- func (p *Plane) SetComponents(x, y, z, w float32) *Plane {
- p.normal.Set(x, y, z)
- p.constant = w
- return p
- }
- // SetFromNormalAndCoplanarPoint sets this plane from a normal vector and a point on the plane.
- // Returns pointer to this updated plane.
- func (p *Plane) SetFromNormalAndCoplanarPoint(normal *Vector3, point *Vector3) *Plane {
- p.normal = *normal
- p.constant = -point.Dot(&p.normal)
- return p
- }
- // SetFromCoplanarPoints sets this plane from three coplanar points.
- // Returns pointer to this updated plane.
- func (p *Plane) SetFromCoplanarPoints(a, b, c *Vector3) *Plane {
- var v1 Vector3
- var v2 Vector3
- normal := v1.SubVectors(c, b).Cross(v2.SubVectors(a, b)).Normalize()
- // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
- p.SetFromNormalAndCoplanarPoint(normal, a)
- return p
- }
- // Copy sets this plane to a copy of other.
- // Returns pointer to this updated plane.
- func (p *Plane) Copy(other *Plane) *Plane {
- p.normal.Copy(&other.normal)
- p.constant = other.constant
- return p
- }
- // Normalize normalizes this plane normal vector and adjusts the constant.
- // Note: will lead to a divide by zero if the plane is invalid.
- // Returns pointer to this updated plane.
- func (p *Plane) Normalize() *Plane {
- inverseNormalLength := 1.0 / p.normal.Length()
- p.normal.MultiplyScalar(inverseNormalLength)
- p.constant *= inverseNormalLength
- return p
- }
- // Negate negates this plane normal.
- // Returns pointer to this updated plane.
- func (p *Plane) Negate() *Plane {
- p.constant *= -1
- p.normal.Negate()
- return p
- }
- // DistanceToPoint returns the distance of this plane from point.
- func (p *Plane) DistanceToPoint(point *Vector3) float32 {
- return p.normal.Dot(point) + p.constant
- }
- // DistanceToSphere returns the distance of this place from the sphere.
- func (p *Plane) DistanceToSphere(sphere *Sphere) float32 {
- return p.DistanceToPoint(&sphere.Center) - sphere.Radius
- }
- // IsIntersectionLine returns the line intersects this plane.
- func (p *Plane) IsIntersectionLine(line *Line3) bool {
- startSign := p.DistanceToPoint(&line.start)
- endSign := p.DistanceToPoint(&line.end)
- return (startSign < 0 && endSign > 0) || (endSign < 0 && startSign > 0)
- }
- // IntersectLine calculates the point in the plane which intersets the specified line.
- // Sets the optionalTarget, if not nil to this point, and also returns it.
- // Returns nil if the line does not intersects the plane.
- func (p *Plane) IntersectLine(line *Line3, optionalTarget *Vector3) *Vector3 {
- var v1 Vector3
- var result *Vector3
- if optionalTarget == nil {
- result = NewVector3(0, 0, 0)
- } else {
- result = optionalTarget
- }
- direction := line.Delta(&v1)
- denominator := p.normal.Dot(direction)
- if denominator == 0 {
- // line is coplanar, return origin
- if p.DistanceToPoint(&line.start) == 0 {
- return result.Copy(&line.start)
- }
- // Unsure if this is the correct method to handle this case.
- return nil
- }
- var t = -(line.start.Dot(&p.normal) + p.constant) / denominator
- if t < 0 || t > 1 {
- return nil
- }
- return result.Copy(direction).MultiplyScalar(t).Add(&line.start)
- }
- // CoplanarPoint sets the optionalTarget to a point in the plane and also returns it.
- // The point set and returned is the closest point from the origin.
- func (p *Plane) CoplanarPoint(optionalTarget *Vector3) *Vector3 {
- var result *Vector3
- if optionalTarget == nil {
- result = NewVector3(0, 0, 0)
- } else {
- result = optionalTarget
- }
- return result.Copy(&p.normal).MultiplyScalar(-p.constant)
- }
- // Translate translates this plane in the direction of its normal by offset.
- // Returns pointer to this updated plane.
- func (p *Plane) Translate(offset *Vector3) *Plane {
- p.constant = p.constant - offset.Dot(&p.normal)
- return p
- }
- // Equals returns if this plane is equal to other
- func (p *Plane) Equals(other *Plane) bool {
- return other.normal.Equals(&p.normal) && (other.constant == p.constant)
- }
- // Clone creates and returns a pointer to a copy of this plane.
- func (p *Plane) Clone(plane *Plane) *Plane {
- return NewPlane(&plane.normal, plane.constant)
- }
|