// // Physically Based Shading of a microfacet surface material - Fragment Shader // Modified from reference implementation at https://github.com/KhronosGroup/glTF-WebGL-PBR // // References: // [1] Real Shading in Unreal Engine 4 // http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf // [2] Physically Based Shading at Disney // http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf // [3] README.md - Environment Maps // https://github.com/KhronosGroup/glTF-WebGL-PBR/#environment-maps // [4] "An Inexpensive BRDF Model for Physically based Rendering" by Christophe Schlick // https://www.cs.virginia.edu/~jdl/bib/appearance/analytic%20models/schlick94b.pdf //#extension GL_EXT_shader_texture_lod: enable //#extension GL_OES_standard_derivatives : enable precision highp float; //uniform vec3 u_LightDirection; //uniform vec3 u_LightColor; //#ifdef USE_IBL //uniform samplerCube u_DiffuseEnvSampler; //uniform samplerCube u_SpecularEnvSampler; //uniform sampler2D u_brdfLUT; //#endif #ifdef HAS_BASECOLORMAP uniform sampler2D uBaseColorSampler; #endif #ifdef HAS_METALROUGHNESSMAP uniform sampler2D uMetallicRoughnessSampler; #endif #ifdef HAS_NORMALMAP uniform sampler2D uNormalSampler; //uniform float uNormalScale; #endif #ifdef HAS_EMISSIVEMAP uniform sampler2D uEmissiveSampler; #endif #ifdef HAS_OCCLUSIONMAP uniform sampler2D uOcclusionSampler; uniform float uOcclusionStrength; #endif // Material parameters uniform array uniform vec4 Material[3]; // Macros to access elements inside the Material array #define uBaseColor Material[0] #define uEmissiveColor Material[1] #define uMetallicFactor Material[2].x #define uRoughnessFactor Material[2].y #include // Inputs from vertex shader in vec3 Position; // Vertex position in camera coordinates. in vec3 Normal; // Vertex normal in camera coordinates. in vec3 CamDir; // Direction from vertex to camera in vec2 FragTexcoord; // Final fragment color out vec4 FragColor; // Encapsulate the various inputs used by the various functions in the shading equation // We store values in this struct to simplify the integration of alternative implementations // of the shading terms, outlined in the Readme.MD Appendix. struct PBRLightInfo { float NdotL; // cos angle between normal and light direction float NdotV; // cos angle between normal and view direction float NdotH; // cos angle between normal and half vector float LdotH; // cos angle between light direction and half vector float VdotH; // cos angle between view direction and half vector }; struct PBRInfo { float perceptualRoughness; // roughness value, as authored by the model creator (input to shader) float metalness; // metallic value at the surface vec3 reflectance0; // full reflectance color (normal incidence angle) vec3 reflectance90; // reflectance color at grazing angle float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2]) vec3 diffuseColor; // color contribution from diffuse lighting vec3 specularColor; // color contribution from specular lighting }; const float M_PI = 3.141592653589793; const float c_MinRoughness = 0.04; vec4 SRGBtoLINEAR(vec4 srgbIn) { //#ifdef MANUAL_SRGB // #ifdef SRGB_FAST_APPROXIMATION // vec3 linOut = pow(srgbIn.xyz,vec3(2.2)); // #else //SRGB_FAST_APPROXIMATION vec3 bLess = step(vec3(0.04045),srgbIn.xyz); vec3 linOut = mix( srgbIn.xyz/vec3(12.92), pow((srgbIn.xyz+vec3(0.055))/vec3(1.055),vec3(2.4)), bLess ); // #endif //SRGB_FAST_APPROXIMATION return vec4(linOut,srgbIn.w); //#else //MANUAL_SRGB // return srgbIn; //#endif //MANUAL_SRGB } // Find the normal for this fragment, pulling either from a predefined normal map // or from the interpolated mesh normal and tangent attributes. vec3 getNormal() { // Retrieve the tangent space matrix //#ifndef HAS_TANGENTS vec3 pos_dx = dFdx(Position); vec3 pos_dy = dFdy(Position); vec3 tex_dx = dFdx(vec3(FragTexcoord, 0.0)); vec3 tex_dy = dFdy(vec3(FragTexcoord, 0.0)); vec3 t = (tex_dy.t * pos_dx - tex_dx.t * pos_dy) / (tex_dx.s * tex_dy.t - tex_dy.s * tex_dx.t); //#ifdef HAS_NORMALS vec3 ng = normalize(Normal); //#else // vec3 ng = cross(pos_dx, pos_dy); //#endif t = normalize(t - ng * dot(ng, t)); vec3 b = normalize(cross(ng, t)); mat3 tbn = mat3(t, b, ng); //#else // HAS_TANGENTS // mat3 tbn = v_TBN; //#endif #ifdef HAS_NORMALMAP float uNormalScale = 1.0; vec3 n = texture(uNormalSampler, FragTexcoord).rgb; n = normalize(tbn * ((2.0 * n - 1.0) * vec3(uNormalScale, uNormalScale, 1.0))); #else // The tbn matrix is linearly interpolated, so we need to re-normalize vec3 n = normalize(tbn[2].xyz); #endif return n; } // Calculation of the lighting contribution from an optional Image Based Light source. // Precomputed Environment Maps are required uniform inputs and are computed as outlined in [1]. // See our README.md on Environment Maps [3] for additional discussion. vec3 getIBLContribution(PBRInfo pbrInputs, PBRLightInfo pbrLight, vec3 n, vec3 reflection) { float mipCount = 9.0; // resolution of 512x512 float lod = (pbrInputs.perceptualRoughness * mipCount); // retrieve a scale and bias to F0. See [1], Figure 3 vec3 brdf = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(texture(u_brdfLUT, vec2(pbrLight.NdotV, 1.0 - pbrInputs.perceptualRoughness))).rgb; vec3 diffuseLight = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(textureCube(u_DiffuseEnvSampler, n)).rgb; //#ifdef USE_TEX_LOD // vec3 specularLight = SRGBtoLINEAR(textureCubeLodEXT(u_SpecularEnvSampler, reflection, lod)).rgb; //#else vec3 specularLight = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(textureCube(u_SpecularEnvSampler, reflection)).rgb; //#endif vec3 diffuse = diffuseLight * pbrInputs.diffuseColor; vec3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y); // For presentation, this allows us to disable IBL terms // diffuse *= u_ScaleIBLAmbient.x; // specular *= u_ScaleIBLAmbient.y; return diffuse + specular; } // Basic Lambertian diffuse // Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog // See also [1], Equation 1 vec3 diffuse(PBRInfo pbrInputs) { return pbrInputs.diffuseColor / M_PI; } // The following equation models the Fresnel reflectance term of the spec equation (aka F()) // Implementation of fresnel from [4], Equation 15 vec3 specularReflection(PBRInfo pbrInputs, PBRLightInfo pbrLight) { return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrLight.VdotH, 0.0, 1.0), 5.0); } // This calculates the specular geometric attenuation (aka G()), // where rougher material will reflect less light back to the viewer. // This implementation is based on [1] Equation 4, and we adopt their modifications to // alphaRoughness as input as originally proposed in [2]. float geometricOcclusion(PBRInfo pbrInputs, PBRLightInfo pbrLight) { float NdotL = pbrLight.NdotL; float NdotV = pbrLight.NdotV; float r = pbrInputs.alphaRoughness; float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL))); float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV))); return attenuationL * attenuationV; } // The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D()) // Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz // Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3. float microfacetDistribution(PBRInfo pbrInputs, PBRLightInfo pbrLight) { float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness; float f = (pbrLight.NdotH * roughnessSq - pbrLight.NdotH) * pbrLight.NdotH + 1.0; return roughnessSq / (M_PI * f * f); } vec3 pbrModel(PBRInfo pbrInputs, vec3 lightColor, vec3 lightDir) { vec3 n = getNormal(); // normal at surface point vec3 v = normalize(CamDir); // Vector from surface point to camera vec3 l = normalize(lightDir); // Vector from surface point to light vec3 h = normalize(l+v); // Half vector between both l and v vec3 reflection = -normalize(reflect(v, n)); float NdotL = clamp(dot(n, l), 0.001, 1.0); float NdotV = abs(dot(n, v)) + 0.001; float NdotH = clamp(dot(n, h), 0.0, 1.0); float LdotH = clamp(dot(l, h), 0.0, 1.0); float VdotH = clamp(dot(v, h), 0.0, 1.0); PBRLightInfo pbrLight = PBRLightInfo( NdotL, NdotV, NdotH, LdotH, VdotH ); // Calculate the shading terms for the microfacet specular shading model vec3 F = specularReflection(pbrInputs, pbrLight); float G = geometricOcclusion(pbrInputs, pbrLight); float D = microfacetDistribution(pbrInputs, pbrLight); // Calculation of analytical lighting contribution vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs); vec3 specContrib = F * G * D / (4.0 * NdotL * NdotV); // Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law) vec3 color = NdotL * lightColor * (diffuseContrib + specContrib); return color; } void main() { float perceptualRoughness = uRoughnessFactor; float metallic = uMetallicFactor; #ifdef HAS_METALROUGHNESSMAP // Roughness is stored in the 'g' channel, metallic is stored in the 'b' channel. // This layout intentionally reserves the 'r' channel for (optional) occlusion map data vec4 mrSample = texture(uMetallicRoughnessSampler, FragTexcoord); perceptualRoughness = mrSample.g * perceptualRoughness; metallic = mrSample.b * metallic; #endif perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0); metallic = clamp(metallic, 0.0, 1.0); // Roughness is authored as perceptual roughness; as is convention, // convert to material roughness by squaring the perceptual roughness [2]. float alphaRoughness = perceptualRoughness * perceptualRoughness; // The albedo may be defined from a base texture or a flat color #ifdef HAS_BASECOLORMAP vec4 baseColor = SRGBtoLINEAR(texture(uBaseColorSampler, FragTexcoord)) * uBaseColor; #else vec4 baseColor = uBaseColor; #endif vec3 f0 = vec3(0.04); vec3 diffuseColor = baseColor.rgb * (vec3(1.0) - f0); diffuseColor *= 1.0 - metallic; vec3 specularColor = mix(f0, baseColor.rgb, uMetallicFactor); // Compute reflectance. float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b); // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect. // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflectance to 0%. float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0); vec3 specularEnvironmentR0 = specularColor.rgb; vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90; PBRInfo pbrInputs = PBRInfo( perceptualRoughness, metallic, specularEnvironmentR0, specularEnvironmentR90, alphaRoughness, diffuseColor, specularColor ); // vec3 normal = getNormal(); vec3 color = vec3(0.0); #if AMB_LIGHTS>0 // Ambient lights for (int i = 0; i < AMB_LIGHTS; i++) { color += AmbientLightColor[i] * pbrInputs.diffuseColor; } #endif #if DIR_LIGHTS>0 // Directional lights for (int i = 0; i < DIR_LIGHTS; i++) { // Diffuse reflection // DirLightPosition is the direction of the current light vec3 lightDirection = normalize(DirLightPosition(i)); // PBR color += pbrModel(pbrInputs, DirLightColor(i), lightDirection); } #endif #if POINT_LIGHTS>0 // Point lights for (int i = 0; i < POINT_LIGHTS; i++) { // Common calculations // Calculates the direction and distance from the current vertex to this point light. vec3 lightDirection = PointLightPosition(i) - vec3(Position); float lightDistance = length(lightDirection); // Normalizes the lightDirection lightDirection = lightDirection / lightDistance; // Calculates the attenuation due to the distance of the light float attenuation = 1.0 / (1.0 + PointLightLinearDecay(i) * lightDistance + PointLightQuadraticDecay(i) * lightDistance * lightDistance); vec3 attenuatedColor = PointLightColor(i) * attenuation; // PBR color += pbrModel(pbrInputs, attenuatedColor, lightDirection); } #endif #if SPOT_LIGHTS>0 for (int i = 0; i < SPOT_LIGHTS; i++) { // Calculates the direction and distance from the current vertex to this spot light. vec3 lightDirection = SpotLightPosition(i) - vec3(Position); float lightDistance = length(lightDirection); lightDirection = lightDirection / lightDistance; // Calculates the attenuation due to the distance of the light float attenuation = 1.0 / (1.0 + SpotLightLinearDecay(i) * lightDistance + SpotLightQuadraticDecay(i) * lightDistance * lightDistance); // Calculates the angle between the vertex direction and spot direction // If this angle is greater than the cutoff the spotlight will not contribute // to the final color. float angle = acos(dot(-lightDirection, SpotLightDirection(i))); float cutoff = radians(clamp(SpotLightCutoffAngle(i), 0.0, 90.0)); if (angle < cutoff) { float spotFactor = pow(dot(-lightDirection, SpotLightDirection(i)), SpotLightAngularDecay(i)); vec3 attenuatedColor = SpotLightColor(i) * attenuation * spotFactor; // PBR color += pbrModel(pbrInputs, attenuatedColor, lightDirection); } } #endif // Calculate lighting contribution from image based lighting source (IBL) //#ifdef USE_IBL // color += getIBLContribution(pbrInputs, n, reflection); //#endif // Apply optional PBR terms for additional (optional) shading #ifdef HAS_OCCLUSIONMAP float ao = texture(uOcclusionSampler, FragTexcoord).r; color = mix(color, color * ao, 1.0);//, uOcclusionStrength); #endif #ifdef HAS_EMISSIVEMAP vec3 emissive = SRGBtoLINEAR(texture(uEmissiveSampler, FragTexcoord)).rgb * vec3(uEmissiveColor); #else vec3 emissive = vec3(uEmissiveColor); #endif color += emissive; // Base Color // FragColor = baseColor; // Normal // FragColor = vec4(n, 1.0); // Emissive Color // FragColor = vec4(emissive, 1.0); // F // color = F; // G // color = vec3(G); // D // color = vec3(D); // Specular // color = specContrib; // Diffuse // color = diffuseContrib; // Roughness // color = vec3(perceptualRoughness); // Metallic // color = vec3(metallic); // Final fragment color FragColor = vec4(pow(color,vec3(1.0/2.2)), baseColor.a); }