|
|
@@ -103,6 +103,13 @@ uniform vec3 Material[6];
|
|
|
} \
|
|
|
}
|
|
|
|
|
|
+// TODO for alpha blending dont use mix use implementation below (similar to one in panel shader)
|
|
|
+ //vec4 prevTexPre = texMixed; \
|
|
|
+ //prevTexPre.rgb *= prevTexPre.a; \
|
|
|
+ //vec4 currTexPre = texColor; \
|
|
|
+ //currTexPre.rgb *= currTexPre.a; \
|
|
|
+ //texMixed = currTexPre + prevTexPre * (1 - currTexPre.a); \
|
|
|
+ //texMixed.rgb /= texMixed.a; \
|
|
|
`
|
|
|
|
|
|
const include_phong_model_source = `/***
|
|
|
@@ -505,6 +512,467 @@ void main() {
|
|
|
gl_Position = MVP * vec4(VertexPosition, 1.0);
|
|
|
}
|
|
|
|
|
|
+`
|
|
|
+
|
|
|
+const physical_fragment_source = `//
|
|
|
+// Physically Based Shading of a microfacet surface material - Fragment Shader
|
|
|
+// Modified from reference implementation at https://github.com/KhronosGroup/glTF-WebGL-PBR
|
|
|
+//
|
|
|
+// References:
|
|
|
+// [1] Real Shading in Unreal Engine 4
|
|
|
+// http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
|
|
|
+// [2] Physically Based Shading at Disney
|
|
|
+// http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
|
|
|
+// [3] README.md - Environment Maps
|
|
|
+// https://github.com/KhronosGroup/glTF-WebGL-PBR/#environment-maps
|
|
|
+// [4] "An Inexpensive BRDF Model for Physically based Rendering" by Christophe Schlick
|
|
|
+// https://www.cs.virginia.edu/~jdl/bib/appearance/analytic%20models/schlick94b.pdf
|
|
|
+
|
|
|
+//#extension GL_EXT_shader_texture_lod: enable
|
|
|
+//#extension GL_OES_standard_derivatives : enable
|
|
|
+
|
|
|
+precision highp float;
|
|
|
+
|
|
|
+//uniform vec3 u_LightDirection;
|
|
|
+//uniform vec3 u_LightColor;
|
|
|
+
|
|
|
+//#ifdef USE_IBL
|
|
|
+//uniform samplerCube u_DiffuseEnvSampler;
|
|
|
+//uniform samplerCube u_SpecularEnvSampler;
|
|
|
+//uniform sampler2D u_brdfLUT;
|
|
|
+//#endif
|
|
|
+
|
|
|
+#ifdef HAS_BASECOLORMAP
|
|
|
+uniform sampler2D uBaseColorSampler;
|
|
|
+#endif
|
|
|
+#ifdef HAS_METALROUGHNESSMAP
|
|
|
+uniform sampler2D uMetallicRoughnessSampler;
|
|
|
+#endif
|
|
|
+#ifdef HAS_NORMALMAP
|
|
|
+uniform sampler2D uNormalSampler;
|
|
|
+//uniform float uNormalScale;
|
|
|
+#endif
|
|
|
+#ifdef HAS_EMISSIVEMAP
|
|
|
+uniform sampler2D uEmissiveSampler;
|
|
|
+#endif
|
|
|
+#ifdef HAS_OCCLUSIONMAP
|
|
|
+uniform sampler2D uOcclusionSampler;
|
|
|
+uniform float uOcclusionStrength;
|
|
|
+#endif
|
|
|
+
|
|
|
+// Material parameters uniform array
|
|
|
+uniform vec4 Material[3];
|
|
|
+// Macros to access elements inside the Material array
|
|
|
+#define uBaseColor Material[0]
|
|
|
+#define uEmissiveColor Material[1]
|
|
|
+#define uMetallicFactor Material[2].x
|
|
|
+#define uRoughnessFactor Material[2].y
|
|
|
+
|
|
|
+#include <lights>
|
|
|
+
|
|
|
+// Inputs from vertex shader
|
|
|
+in vec3 Position; // Vertex position in camera coordinates.
|
|
|
+in vec3 Normal; // Vertex normal in camera coordinates.
|
|
|
+in vec3 CamDir; // Direction from vertex to camera
|
|
|
+in vec2 FragTexcoord;
|
|
|
+
|
|
|
+// Final fragment color
|
|
|
+out vec4 FragColor;
|
|
|
+
|
|
|
+// Encapsulate the various inputs used by the various functions in the shading equation
|
|
|
+// We store values in this struct to simplify the integration of alternative implementations
|
|
|
+// of the shading terms, outlined in the Readme.MD Appendix.
|
|
|
+struct PBRLightInfo
|
|
|
+{
|
|
|
+ float NdotL; // cos angle between normal and light direction
|
|
|
+ float NdotV; // cos angle between normal and view direction
|
|
|
+ float NdotH; // cos angle between normal and half vector
|
|
|
+ float LdotH; // cos angle between light direction and half vector
|
|
|
+ float VdotH; // cos angle between view direction and half vector
|
|
|
+};
|
|
|
+
|
|
|
+struct PBRInfo
|
|
|
+{
|
|
|
+ float perceptualRoughness; // roughness value, as authored by the model creator (input to shader)
|
|
|
+ float metalness; // metallic value at the surface
|
|
|
+ vec3 reflectance0; // full reflectance color (normal incidence angle)
|
|
|
+ vec3 reflectance90; // reflectance color at grazing angle
|
|
|
+ float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2])
|
|
|
+ vec3 diffuseColor; // color contribution from diffuse lighting
|
|
|
+ vec3 specularColor; // color contribution from specular lighting
|
|
|
+};
|
|
|
+
|
|
|
+const float M_PI = 3.141592653589793;
|
|
|
+const float c_MinRoughness = 0.04;
|
|
|
+
|
|
|
+vec4 SRGBtoLINEAR(vec4 srgbIn) {
|
|
|
+//#ifdef MANUAL_SRGB
|
|
|
+// #ifdef SRGB_FAST_APPROXIMATION
|
|
|
+// vec3 linOut = pow(srgbIn.xyz,vec3(2.2));
|
|
|
+// #else //SRGB_FAST_APPROXIMATION
|
|
|
+ vec3 bLess = step(vec3(0.04045),srgbIn.xyz);
|
|
|
+ vec3 linOut = mix( srgbIn.xyz/vec3(12.92), pow((srgbIn.xyz+vec3(0.055))/vec3(1.055),vec3(2.4)), bLess );
|
|
|
+// #endif //SRGB_FAST_APPROXIMATION
|
|
|
+ return vec4(linOut,srgbIn.w);
|
|
|
+//#else //MANUAL_SRGB
|
|
|
+// return srgbIn;
|
|
|
+//#endif //MANUAL_SRGB
|
|
|
+}
|
|
|
+
|
|
|
+// Find the normal for this fragment, pulling either from a predefined normal map
|
|
|
+// or from the interpolated mesh normal and tangent attributes.
|
|
|
+vec3 getNormal()
|
|
|
+{
|
|
|
+ // Retrieve the tangent space matrix
|
|
|
+//#ifndef HAS_TANGENTS
|
|
|
+ vec3 pos_dx = dFdx(Position);
|
|
|
+ vec3 pos_dy = dFdy(Position);
|
|
|
+ vec3 tex_dx = dFdx(vec3(FragTexcoord, 0.0));
|
|
|
+ vec3 tex_dy = dFdy(vec3(FragTexcoord, 0.0));
|
|
|
+ vec3 t = (tex_dy.t * pos_dx - tex_dx.t * pos_dy) / (tex_dx.s * tex_dy.t - tex_dy.s * tex_dx.t);
|
|
|
+
|
|
|
+//#ifdef HAS_NORMALS
|
|
|
+ vec3 ng = normalize(Normal);
|
|
|
+//#else
|
|
|
+// vec3 ng = cross(pos_dx, pos_dy);
|
|
|
+//#endif
|
|
|
+
|
|
|
+ t = normalize(t - ng * dot(ng, t));
|
|
|
+ vec3 b = normalize(cross(ng, t));
|
|
|
+ mat3 tbn = mat3(t, b, ng);
|
|
|
+//#else // HAS_TANGENTS
|
|
|
+// mat3 tbn = v_TBN;
|
|
|
+//#endif
|
|
|
+
|
|
|
+#ifdef HAS_NORMALMAP
|
|
|
+ float uNormalScale = 1.0;
|
|
|
+ vec3 n = texture2D(uNormalSampler, FragTexcoord).rgb;
|
|
|
+ n = normalize(tbn * ((2.0 * n - 1.0) * vec3(uNormalScale, uNormalScale, 1.0)));
|
|
|
+#else
|
|
|
+ // The tbn matrix is linearly interpolated, so we need to re-normalize
|
|
|
+ vec3 n = normalize(tbn[2].xyz);
|
|
|
+#endif
|
|
|
+
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+// Calculation of the lighting contribution from an optional Image Based Light source.
|
|
|
+// Precomputed Environment Maps are required uniform inputs and are computed as outlined in [1].
|
|
|
+// See our README.md on Environment Maps [3] for additional discussion.
|
|
|
+vec3 getIBLContribution(PBRInfo pbrInputs, PBRLightInfo pbrLight, vec3 n, vec3 reflection)
|
|
|
+{
|
|
|
+ float mipCount = 9.0; // resolution of 512x512
|
|
|
+ float lod = (pbrInputs.perceptualRoughness * mipCount);
|
|
|
+ // retrieve a scale and bias to F0. See [1], Figure 3
|
|
|
+ vec3 brdf = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(texture2D(u_brdfLUT, vec2(pbrLight.NdotV, 1.0 - pbrInputs.perceptualRoughness))).rgb;
|
|
|
+ vec3 diffuseLight = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(textureCube(u_DiffuseEnvSampler, n)).rgb;
|
|
|
+
|
|
|
+//#ifdef USE_TEX_LOD
|
|
|
+// vec3 specularLight = SRGBtoLINEAR(textureCubeLodEXT(u_SpecularEnvSampler, reflection, lod)).rgb;
|
|
|
+//#else
|
|
|
+ vec3 specularLight = vec3(0.5,0.5,0.5);//SRGBtoLINEAR(textureCube(u_SpecularEnvSampler, reflection)).rgb;
|
|
|
+//#endif
|
|
|
+
|
|
|
+ vec3 diffuse = diffuseLight * pbrInputs.diffuseColor;
|
|
|
+ vec3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y);
|
|
|
+
|
|
|
+ // For presentation, this allows us to disable IBL terms
|
|
|
+// diffuse *= u_ScaleIBLAmbient.x;
|
|
|
+// specular *= u_ScaleIBLAmbient.y;
|
|
|
+
|
|
|
+ return diffuse + specular;
|
|
|
+}
|
|
|
+
|
|
|
+// Basic Lambertian diffuse
|
|
|
+// Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog
|
|
|
+// See also [1], Equation 1
|
|
|
+vec3 diffuse(PBRInfo pbrInputs)
|
|
|
+{
|
|
|
+ return pbrInputs.diffuseColor / M_PI;
|
|
|
+}
|
|
|
+
|
|
|
+// The following equation models the Fresnel reflectance term of the spec equation (aka F())
|
|
|
+// Implementation of fresnel from [4], Equation 15
|
|
|
+vec3 specularReflection(PBRInfo pbrInputs, PBRLightInfo pbrLight)
|
|
|
+{
|
|
|
+ return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrLight.VdotH, 0.0, 1.0), 5.0);
|
|
|
+}
|
|
|
+
|
|
|
+// This calculates the specular geometric attenuation (aka G()),
|
|
|
+// where rougher material will reflect less light back to the viewer.
|
|
|
+// This implementation is based on [1] Equation 4, and we adopt their modifications to
|
|
|
+// alphaRoughness as input as originally proposed in [2].
|
|
|
+float geometricOcclusion(PBRInfo pbrInputs, PBRLightInfo pbrLight)
|
|
|
+{
|
|
|
+ float NdotL = pbrLight.NdotL;
|
|
|
+ float NdotV = pbrLight.NdotV;
|
|
|
+ float r = pbrInputs.alphaRoughness;
|
|
|
+
|
|
|
+ float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL)));
|
|
|
+ float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV)));
|
|
|
+ return attenuationL * attenuationV;
|
|
|
+}
|
|
|
+
|
|
|
+// The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D())
|
|
|
+// Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz
|
|
|
+// Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3.
|
|
|
+float microfacetDistribution(PBRInfo pbrInputs, PBRLightInfo pbrLight)
|
|
|
+{
|
|
|
+ float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness;
|
|
|
+ float f = (pbrLight.NdotH * roughnessSq - pbrLight.NdotH) * pbrLight.NdotH + 1.0;
|
|
|
+ return roughnessSq / (M_PI * f * f);
|
|
|
+}
|
|
|
+
|
|
|
+vec3 pbrModel(PBRInfo pbrInputs, vec3 lightColor, vec3 lightDir) {
|
|
|
+
|
|
|
+ vec3 n = getNormal(); // normal at surface point
|
|
|
+ vec3 v = normalize(CamDir); // Vector from surface point to camera
|
|
|
+ vec3 l = normalize(lightDir); // Vector from surface point to light
|
|
|
+ vec3 h = normalize(l+v); // Half vector between both l and v
|
|
|
+ vec3 reflection = -normalize(reflect(v, n));
|
|
|
+
|
|
|
+ float NdotL = clamp(dot(n, l), 0.001, 1.0);
|
|
|
+ float NdotV = abs(dot(n, v)) + 0.001;
|
|
|
+ float NdotH = clamp(dot(n, h), 0.0, 1.0);
|
|
|
+ float LdotH = clamp(dot(l, h), 0.0, 1.0);
|
|
|
+ float VdotH = clamp(dot(v, h), 0.0, 1.0);
|
|
|
+
|
|
|
+ PBRLightInfo pbrLight = PBRLightInfo(
|
|
|
+ NdotL,
|
|
|
+ NdotV,
|
|
|
+ NdotH,
|
|
|
+ LdotH,
|
|
|
+ VdotH
|
|
|
+ );
|
|
|
+
|
|
|
+ // Calculate the shading terms for the microfacet specular shading model
|
|
|
+ vec3 F = specularReflection(pbrInputs, pbrLight);
|
|
|
+ float G = geometricOcclusion(pbrInputs, pbrLight);
|
|
|
+ float D = microfacetDistribution(pbrInputs, pbrLight);
|
|
|
+
|
|
|
+ // Calculation of analytical lighting contribution
|
|
|
+ vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs);
|
|
|
+ vec3 specContrib = F * G * D / (4.0 * NdotL * NdotV);
|
|
|
+ // Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law)
|
|
|
+ vec3 color = NdotL * lightColor * (diffuseContrib + specContrib);
|
|
|
+
|
|
|
+ return color;
|
|
|
+}
|
|
|
+
|
|
|
+void main() {
|
|
|
+
|
|
|
+ float perceptualRoughness = uRoughnessFactor;
|
|
|
+ float metallic = uMetallicFactor;
|
|
|
+
|
|
|
+#ifdef HAS_METALROUGHNESSMAP
|
|
|
+ // Roughness is stored in the 'g' channel, metallic is stored in the 'b' channel.
|
|
|
+ // This layout intentionally reserves the 'r' channel for (optional) occlusion map data
|
|
|
+ vec4 mrSample = texture2D(uMetallicRoughnessSampler, FragTexcoord);
|
|
|
+ perceptualRoughness = mrSample.g * perceptualRoughness;
|
|
|
+ metallic = mrSample.b * metallic;
|
|
|
+#endif
|
|
|
+
|
|
|
+ perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0);
|
|
|
+ metallic = clamp(metallic, 0.0, 1.0);
|
|
|
+ // Roughness is authored as perceptual roughness; as is convention,
|
|
|
+ // convert to material roughness by squaring the perceptual roughness [2].
|
|
|
+ float alphaRoughness = perceptualRoughness * perceptualRoughness;
|
|
|
+
|
|
|
+ // The albedo may be defined from a base texture or a flat color
|
|
|
+#ifdef HAS_BASECOLORMAP
|
|
|
+ vec4 baseColor = SRGBtoLINEAR(texture2D(uBaseColorSampler, FragTexcoord)) * uBaseColor;
|
|
|
+#else
|
|
|
+ vec4 baseColor = uBaseColor;
|
|
|
+#endif
|
|
|
+
|
|
|
+ vec3 f0 = vec3(0.04);
|
|
|
+ vec3 diffuseColor = baseColor.rgb * (vec3(1.0) - f0);
|
|
|
+ diffuseColor *= 1.0 - metallic;
|
|
|
+
|
|
|
+ vec3 specularColor = mix(f0, baseColor.rgb, uMetallicFactor);
|
|
|
+
|
|
|
+ // Compute reflectance.
|
|
|
+ float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b);
|
|
|
+
|
|
|
+ // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect.
|
|
|
+ // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflectance to 0%.
|
|
|
+ float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);
|
|
|
+ vec3 specularEnvironmentR0 = specularColor.rgb;
|
|
|
+ vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90;
|
|
|
+
|
|
|
+ PBRInfo pbrInputs = PBRInfo(
|
|
|
+ perceptualRoughness,
|
|
|
+ metallic,
|
|
|
+ specularEnvironmentR0,
|
|
|
+ specularEnvironmentR90,
|
|
|
+ alphaRoughness,
|
|
|
+ diffuseColor,
|
|
|
+ specularColor
|
|
|
+ );
|
|
|
+
|
|
|
+// vec3 normal = getNormal();
|
|
|
+ vec3 color = vec3(0.0);
|
|
|
+
|
|
|
+#if AMB_LIGHTS>0
|
|
|
+ // Ambient lights
|
|
|
+ for (int i = 0; i < AMB_LIGHTS; i++) {
|
|
|
+ color += AmbientLightColor[i] * pbrInputs.diffuseColor;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+#if DIR_LIGHTS>0
|
|
|
+ // Directional lights
|
|
|
+ for (int i = 0; i < DIR_LIGHTS; i++) {
|
|
|
+ // Diffuse reflection
|
|
|
+ // DirLightPosition is the direction of the current light
|
|
|
+ vec3 lightDirection = normalize(DirLightPosition(i));
|
|
|
+ // PBR
|
|
|
+ color += pbrModel(pbrInputs, DirLightColor(i), lightDirection);
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+#if POINT_LIGHTS>0
|
|
|
+ // Point lights
|
|
|
+ for (int i = 0; i < POINT_LIGHTS; i++) {
|
|
|
+ // Common calculations
|
|
|
+ // Calculates the direction and distance from the current vertex to this point light.
|
|
|
+ vec3 lightDirection = PointLightPosition(i) - vec3(Position);
|
|
|
+ float lightDistance = length(lightDirection);
|
|
|
+ // Normalizes the lightDirection
|
|
|
+ lightDirection = lightDirection / lightDistance;
|
|
|
+ // Calculates the attenuation due to the distance of the light
|
|
|
+ float attenuation = 1.0 / (1.0 + PointLightLinearDecay(i) * lightDistance +
|
|
|
+ PointLightQuadraticDecay(i) * lightDistance * lightDistance);
|
|
|
+ vec3 attenuatedColor = PointLightColor(i) * attenuation;
|
|
|
+ // PBR
|
|
|
+ color += pbrModel(pbrInputs, attenuatedColor, lightDirection);
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+#if SPOT_LIGHTS>0
|
|
|
+ for (int i = 0; i < SPOT_LIGHTS; i++) {
|
|
|
+
|
|
|
+ // Calculates the direction and distance from the current vertex to this spot light.
|
|
|
+ vec3 lightDirection = SpotLightPosition(i) - vec3(Position);
|
|
|
+ float lightDistance = length(lightDirection);
|
|
|
+ lightDirection = lightDirection / lightDistance;
|
|
|
+
|
|
|
+ // Calculates the attenuation due to the distance of the light
|
|
|
+ float attenuation = 1.0 / (1.0 + SpotLightLinearDecay(i) * lightDistance +
|
|
|
+ SpotLightQuadraticDecay(i) * lightDistance * lightDistance);
|
|
|
+
|
|
|
+ // Calculates the angle between the vertex direction and spot direction
|
|
|
+ // If this angle is greater than the cutoff the spotlight will not contribute
|
|
|
+ // to the final color.
|
|
|
+ float angle = acos(dot(-lightDirection, SpotLightDirection(i)));
|
|
|
+ float cutoff = radians(clamp(SpotLightCutoffAngle(i), 0.0, 90.0));
|
|
|
+
|
|
|
+ if (angle < cutoff) {
|
|
|
+ float spotFactor = pow(dot(-lightDirection, SpotLightDirection(i)), SpotLightAngularDecay(i));
|
|
|
+ vec3 attenuatedColor = SpotLightColor(i) * attenuation * spotFactor;
|
|
|
+ // PBR
|
|
|
+ color += pbrModel(pbrInputs, attenuatedColor, lightDirection);
|
|
|
+ }
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ // Calculate lighting contribution from image based lighting source (IBL)
|
|
|
+//#ifdef USE_IBL
|
|
|
+// color += getIBLContribution(pbrInputs, n, reflection);
|
|
|
+//#endif
|
|
|
+
|
|
|
+ // Apply optional PBR terms for additional (optional) shading
|
|
|
+#ifdef HAS_OCCLUSIONMAP
|
|
|
+ float ao = texture2D(uOcclusionSampler, FragTexcoord).r;
|
|
|
+ color = mix(color, color * ao, 1.0);//, uOcclusionStrength);
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifdef HAS_EMISSIVEMAP
|
|
|
+ vec3 emissive = SRGBtoLINEAR(texture2D(uEmissiveSampler, FragTexcoord)).rgb * vec3(uEmissiveColor);
|
|
|
+#else
|
|
|
+ vec3 emissive = vec3(uEmissiveColor);
|
|
|
+#endif
|
|
|
+ color += emissive;
|
|
|
+
|
|
|
+ // Base Color
|
|
|
+// FragColor = baseColor;
|
|
|
+
|
|
|
+ // Normal
|
|
|
+// FragColor = vec4(n, 1.0);
|
|
|
+
|
|
|
+ // Emissive Color
|
|
|
+// FragColor = vec4(emissive, 1.0);
|
|
|
+
|
|
|
+ // F
|
|
|
+// color = F;
|
|
|
+
|
|
|
+ // G
|
|
|
+// color = vec3(G);
|
|
|
+
|
|
|
+ // D
|
|
|
+// color = vec3(D);
|
|
|
+
|
|
|
+ // Specular
|
|
|
+// color = specContrib;
|
|
|
+
|
|
|
+ // Diffuse
|
|
|
+// color = diffuseContrib;
|
|
|
+
|
|
|
+ // Roughness
|
|
|
+// color = vec3(perceptualRoughness);
|
|
|
+
|
|
|
+ // Metallic
|
|
|
+// color = vec3(metallic);
|
|
|
+
|
|
|
+ // Final fragment color
|
|
|
+ FragColor = vec4(pow(color,vec3(1.0/2.2)), baseColor.a);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+`
|
|
|
+
|
|
|
+const physical_vertex_source = `//
|
|
|
+// Physically Based Shading of a microfacet surface material - Vertex Shader
|
|
|
+// Modified from reference implementation at https://github.com/KhronosGroup/glTF-WebGL-PBR
|
|
|
+//
|
|
|
+#include <attributes>
|
|
|
+
|
|
|
+// Model uniforms
|
|
|
+uniform mat4 ModelViewMatrix;
|
|
|
+uniform mat3 NormalMatrix;
|
|
|
+uniform mat4 MVP;
|
|
|
+
|
|
|
+// Output variables for Fragment shader
|
|
|
+out vec3 Position;
|
|
|
+out vec3 Normal;
|
|
|
+out vec3 CamDir;
|
|
|
+out vec2 FragTexcoord;
|
|
|
+
|
|
|
+void main() {
|
|
|
+
|
|
|
+ // Transform this vertex position to camera coordinates.
|
|
|
+ Position = vec3(ModelViewMatrix * vec4(VertexPosition, 1.0));
|
|
|
+
|
|
|
+ // Transform this vertex normal to camera coordinates.
|
|
|
+ Normal = normalize(NormalMatrix * VertexNormal);
|
|
|
+
|
|
|
+ // Calculate the direction vector from the vertex to the camera
|
|
|
+ // The camera is at 0,0,0
|
|
|
+ CamDir = normalize(-Position.xyz);
|
|
|
+
|
|
|
+ // Flips texture coordinate Y if requested.
|
|
|
+ vec2 texcoord = VertexTexcoord;
|
|
|
+ // #if MAT_TEXTURES>0
|
|
|
+ // if (MatTexFlipY(0)) {
|
|
|
+ // texcoord.y = 1 - texcoord.y;
|
|
|
+ // }
|
|
|
+ // #endif
|
|
|
+ FragTexcoord = texcoord;
|
|
|
+
|
|
|
+ gl_Position = MVP * vec4(VertexPosition, 1.0);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
`
|
|
|
|
|
|
const point_fragment_source = `#include <material>
|
|
|
@@ -769,6 +1237,8 @@ var shaderMap = map[string]string{
|
|
|
"panel_vertex": panel_vertex_source,
|
|
|
"phong_fragment": phong_fragment_source,
|
|
|
"phong_vertex": phong_vertex_source,
|
|
|
+ "physical_fragment": physical_fragment_source,
|
|
|
+ "physical_vertex": physical_vertex_source,
|
|
|
"point_fragment": point_fragment_source,
|
|
|
"point_vertex": point_vertex_source,
|
|
|
"sprite_fragment": sprite_fragment_source,
|
|
|
@@ -783,6 +1253,7 @@ var programMap = map[string]ProgramInfo{
|
|
|
"basic": {"basic_vertex", "basic_fragment", ""},
|
|
|
"panel": {"panel_vertex", "panel_fragment", ""},
|
|
|
"phong": {"phong_vertex", "phong_fragment", ""},
|
|
|
+ "physical": {"physical_vertex", "physical_fragment", ""},
|
|
|
"point": {"point_vertex", "point_fragment", ""},
|
|
|
"sprite": {"sprite_vertex", "sprite_fragment", ""},
|
|
|
"standard": {"standard_vertex", "standard_fragment", ""},
|