bcm.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. /*
  2. MSP430 Emulator
  3. Copyright (C) 2020 Rudolf Geosits (rgeosits@live.esu.edu)
  4. "MSP430 Emulator" is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. "MSP430 Emulator" is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <https://www.gnu.org/licenses/>.
  14. */
  15. #include "bcm.h"
  16. #ifdef _MSC_VER
  17. #include <Windows.h>
  18. #else
  19. #include <time.h>
  20. #endif
  21. uint64_t getnano() {
  22. #ifdef _MSC_VER
  23. static LARGE_INTEGER frequency;
  24. if (frequency.QuadPart == 0) QueryPerformanceFrequency(&frequency);
  25. LARGE_INTEGER now;
  26. QueryPerformanceCounter(&now);
  27. double x = (double)now.QuadPart / (double)frequency.QuadPart;
  28. return (uint64_t)(x * 1000000000.0);
  29. #else
  30. struct timespec now;
  31. clock_gettime(CLOCK_MONOTONIC, &now);
  32. return now.tv_sec * 1000000000 + now.tv_nsec;
  33. #endif
  34. }
  35. void handle_bcm (Emulator *emu)
  36. {
  37. Cpu *cpu = emu->cpu;
  38. Bcm *bcm = cpu->bcm;
  39. uint8_t DCOCTL = *bcm->DCOCTL;
  40. uint8_t BCSCTL1 = *bcm->BCSCTL1;
  41. uint8_t BCSCTL2 = *bcm->BCSCTL2;
  42. uint8_t BCSCTL3 = *bcm->BCSCTL3;
  43. // HANDLE MCLK -------------------
  44. uint8_t SELMx = BCSCTL2 >> 6;
  45. uint8_t DIVMx = (BCSCTL2 >> 4) & 0x03;
  46. if (SELMx == 0b00 || SELMx == 0b01) { // source = DCOCLK
  47. bcm->mclk_source = DCOCLK;
  48. bcm->mclk_freq = (bcm->dco_freq*1.0) / bcm->mclk_div;
  49. }
  50. else if (SELMx == 0b10) { // XT2CLK
  51. bcm->mclk_source = XT2CLK;
  52. }
  53. else if (SELMx == 0b11) { // VLOCLK
  54. bcm->mclk_source = VLOCLK;
  55. }
  56. switch (DIVMx) {
  57. case 0b00: bcm->mclk_div = 1; break;
  58. case 0b01: bcm->mclk_div = 2; break;
  59. case 0b10: bcm->mclk_div = 4; break;
  60. case 0b11: bcm->mclk_div = 8; break;
  61. default: break;
  62. }
  63. // HANDLE SMCLK -------------------
  64. uint8_t SELS = (BCSCTL2 >> 3) & 0x01;
  65. uint8_t DIVSx = (BCSCTL2 >> 1) & 0x03;
  66. // HANDLE ACLK -------------------
  67. uint8_t DIVAx = (BCSCTL1 >> 4) & 0x03;
  68. // HANDLE LOW POWER MODES --------
  69. // Active Mode (CPU is active, all enabled clocks are active)
  70. if (!cpu->sr.SCG1 && !cpu->sr.SCG0 && !cpu->sr.OSCOFF && !cpu->sr.CPUOFF) {
  71. }
  72. // LPM0 (CPU, MCLK are disabled, SMCLK, ACLK are active)
  73. else if (!cpu->sr.SCG1 && !cpu->sr.SCG0 && !cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  74. }
  75. /* LPM1 (CPU, MCLK are disabled. DCO and DC generator are
  76. disabled if the DCO is not used for SMCLK. ACLK is
  77. active.)
  78. */
  79. else if (!cpu->sr.SCG1 && cpu->sr.SCG0 && !cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  80. }
  81. /* LPM2 (CPU, MCLK, SMCLK, DCO are disabled. DC generator remains enabled.
  82. ACLK is active.) */
  83. else if (cpu->sr.SCG1 && !cpu->sr.SCG0 && !cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  84. }
  85. // LPM3 (CPU, MCLK, SMCLK, DCO are disabled. DC generatordisabled.ACLK active.
  86. else if (cpu->sr.SCG1 && cpu->sr.SCG0 && !cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  87. }
  88. // LPM4 (CPU and all clocks are disabled)
  89. else if (cpu->sr.SCG1 && cpu->sr.SCG0 && cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  90. }
  91. // HANDLE DCO --------------------
  92. uint8_t DCOx = DCOCTL >> 5;
  93. uint8_t MODx = DCOCTL & 0x1F;
  94. uint8_t RSELx = BCSCTL1 & 0x0F;
  95. // Default state of BCM after reset ~1.03 MHz
  96. if (DCOx == 0b011 && RSELx == 0b0111) {
  97. bcm->dco_freq = 1030000;
  98. bcm->dco_period = 971;
  99. bcm->dco_pulse_width = 485;
  100. }
  101. // 16 Mhz
  102. else if (DCOx == 0b100 && RSELx == 0b1111) {
  103. bcm->dco_freq = 16000000;
  104. bcm->dco_period = 63;
  105. bcm->dco_pulse_width = 31;
  106. }
  107. // 12 MHz
  108. else if (DCOx == 0b100 && RSELx == 0b1110) {
  109. bcm->dco_freq = 12000000;
  110. bcm->dco_period = 83;
  111. bcm->dco_pulse_width = 42;
  112. }
  113. // 8 Mhz
  114. else if (DCOx == 0b100 && RSELx == 0b1101) {
  115. bcm->dco_freq = 8000000;
  116. bcm->dco_period = 125;
  117. bcm->dco_pulse_width = 62;
  118. }
  119. // 1 MHz
  120. else if (DCOx == 0b110 && RSELx == 0b0110) {
  121. bcm->dco_freq = 1000000;
  122. bcm->dco_period = 1000;
  123. bcm->dco_pulse_width = 500;
  124. }
  125. // HANDLE LFXT1CLK -------------------
  126. uint8_t XTS = (BCSCTL1 >> 6) & 0x01; // LFXT1CLK select (high/low)
  127. }
  128. void setup_bcm (Emulator *emu)
  129. {
  130. Cpu *cpu = emu->cpu;
  131. Bcm *bcm = cpu->bcm;
  132. static const uint16_t DCOCTL_VLOC = 0x56;
  133. static const uint16_t BCSCTL1_VLOC = 0x57;
  134. static const uint16_t BCSCTL2_VLOC = 0x58;
  135. static const uint16_t BCSCTL3_VLOC = 0x53;
  136. static const uint16_t IE1_VLOC = 0x0;
  137. static const uint16_t IFG1_VLOC = 0x2;
  138. *(bcm->DCOCTL = (uint8_t *) get_addr_ptr(DCOCTL_VLOC)) = 0x60;
  139. *(bcm->BCSCTL1 = (uint8_t *) get_addr_ptr(BCSCTL1_VLOC)) = 0x87;
  140. *(bcm->BCSCTL2 = (uint8_t *) get_addr_ptr(BCSCTL2_VLOC)) = 0;
  141. *(bcm->BCSCTL3 = (uint8_t *) get_addr_ptr(BCSCTL3_VLOC)) = 0x5;
  142. *(bcm->IE1 = (uint8_t *) get_addr_ptr(IE1_VLOC)) = 0;
  143. *(bcm->IFG1 = (uint8_t *) get_addr_ptr(IFG1_VLOC)) = 0;
  144. // 1.03 MHz
  145. bcm->dco_freq = 1030000;
  146. bcm->dco_period = 971;
  147. bcm->dco_pulse_width = 970 / 2;
  148. }
  149. //uint64_t nanosec_diff(struct timespec *timeA_p, struct timespec *timeB_p)
  150. //{
  151. // return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec);
  152. //}
  153. void mclk_wait_cycles (Emulator *emu, uint64_t cycles)
  154. {
  155. Cpu *cpu = emu->cpu;
  156. Bcm *bcm = cpu->bcm;
  157. uint64_t start, end;
  158. uint64_t i, elapsed_nsecs;
  159. for (i = 0;i < cycles;i++)
  160. {
  161. start = getnano();
  162. // clock_gettime(CLOCK_MONOTONIC, &start);
  163. while (true)
  164. {
  165. // clock_gettime(CLOCK_MONOTONIC, &end);
  166. end = getnano();
  167. elapsed_nsecs = end - start;//nanosec_diff(&end, &start);
  168. // Choose timing based on clock source
  169. if (bcm->mclk_source == DCOCLK)
  170. {
  171. double thing = (1.0/(bcm->dco_freq/bcm->mclk_div))*1000000000.0;
  172. if (elapsed_nsecs >= (uint64_t)thing)
  173. break;
  174. }
  175. else
  176. {
  177. puts("Error, clock source");
  178. }
  179. }
  180. }
  181. }
  182. void smclk_wait_cycles (Emulator *emu, uint64_t cycles)
  183. {
  184. Cpu *cpu = emu->cpu;
  185. Bcm *bcm = cpu->bcm;
  186. uint64_t start, end;
  187. uint64_t i, elapsed_nsecs;
  188. for (i = 0;i < cycles;i++) {
  189. start = getnano();
  190. // clock_gettime(CLOCK_MONOTONIC, &start);
  191. while (true) {
  192. end = getnano();
  193. // clock_gettime(CLOCK_MONOTONIC, &end);
  194. elapsed_nsecs = end - start;//nanosec_diff(&end, &start);
  195. // Choose timing based on clock source
  196. if (bcm->mclk_source == DCOCLK) {
  197. //printf("div: %llu\n",
  198. //(long long unsigned)(1/(bcm->dco_freq/bcm->mclk_div)));
  199. double thing = (1.0/(bcm->dco_freq/bcm->mclk_div))*1000000000.0;
  200. if (elapsed_nsecs >= (uint64_t)thing) {
  201. break;
  202. }
  203. }
  204. else {
  205. puts("Error, clock source");
  206. }
  207. }
  208. }
  209. }
  210. /*
  211. /*
  212. // Start Sources DCO, etc
  213. pthread_t pp;
  214. if ( pthread_create(&pp, NULL, DCO_source, (void *)emu ) ) {
  215. printf("Error creating DCO thread\n");
  216. exit(1);
  217. }
  218. void *DCO_source (void *data)
  219. {
  220. Emulator *emu = (Emulator *)data;
  221. Bcm *bcm = emu->cpu->bcm;
  222. printf("In source thread...\n");
  223. struct timespec start, end;
  224. uint64_t elapsed_nsecs;
  225. uint64_t trimmer = 0;
  226. while (true) {
  227. clock_gettime(CLOCK_MONOTONIC, &start);
  228. while (true) {
  229. clock_gettime(CLOCK_MONOTONIC, &end);
  230. elapsed_nsecs = nanosec_diff(&end, &start);
  231. if (elapsed_nsecs >= bcm->dco_period) break;
  232. }
  233. }
  234. /*
  235. while (true) {
  236. clock_gettime(CLOCK_MONOTONIC, &start);
  237. bcm->dco_high = true;
  238. while (true) {
  239. clock_gettime(CLOCK_MONOTONIC, &end);
  240. elapsed_nsecs = nanosec_diff(&end, &start);
  241. if (elapsed_nsecs >= bcm->dco_pulse_width) {
  242. bcm->dco_high = false;
  243. }
  244. if (elapsed_nsecs >= bcm->dco_period) break;
  245. }
  246. }
  247. return NULL;
  248. }
  249. */