bcm.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. /*
  2. MSP430 Emulator
  3. Copyright (C) 2020 Rudolf Geosits (rgeosits@live.esu.edu)
  4. "MSP430 Emulator" is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. "MSP430 Emulator" is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <https://www.gnu.org/licenses/>.
  14. */
  15. #include "bcm.h"
  16. void handle_bcm (Emulator *emu)
  17. {
  18. Cpu *cpu = emu->cpu;
  19. Bcm *bcm = cpu->bcm;
  20. uint8_t DCOCTL = *bcm->DCOCTL;
  21. uint8_t BCSCTL1 = *bcm->BCSCTL1;
  22. uint8_t BCSCTL2 = *bcm->BCSCTL2;
  23. uint8_t BCSCTL3 = *bcm->BCSCTL3;
  24. // HANDLE MCLK -------------------
  25. uint8_t SELMx = BCSCTL2 >> 6;
  26. uint8_t DIVMx = (BCSCTL2 >> 4) & 0x03;
  27. if (SELMx == 0b00 || SELMx == 0b01) { // source = DCOCLK
  28. bcm->mclk_source = DCOCLK;
  29. bcm->mclk_freq = (bcm->dco_freq*1.0) / bcm->mclk_div;
  30. }
  31. else if (SELMx == 0b10) { // XT2CLK
  32. bcm->mclk_source = XT2CLK;
  33. }
  34. else if (SELMx == 0b11) { // VLOCLK
  35. bcm->mclk_source = VLOCLK;
  36. }
  37. switch (DIVMx) {
  38. case 0b00: bcm->mclk_div = 1; break;
  39. case 0b01: bcm->mclk_div = 2; break;
  40. case 0b10: bcm->mclk_div = 4; break;
  41. case 0b11: bcm->mclk_div = 8; break;
  42. default: break;
  43. }
  44. // HANDLE SMCLK -------------------
  45. uint8_t SELS = (BCSCTL2 >> 3) & 0x01;
  46. uint8_t DIVSx = (BCSCTL2 >> 1) & 0x03;
  47. // HANDLE ACLK -------------------
  48. uint8_t DIVAx = (BCSCTL1 >> 4) & 0x03;
  49. // HANDLE LOW POWER MODES --------
  50. // Active Mode (CPU is active, all enabled clocks are active)
  51. if (!cpu->sr.SCG1 && !cpu->sr.SCG0 && !cpu->sr.OSCOFF && !cpu->sr.CPUOFF) {
  52. }
  53. // LPM0 (CPU, MCLK are disabled, SMCLK, ACLK are active)
  54. else if (!cpu->sr.SCG1 && !cpu->sr.SCG0 && !cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  55. }
  56. /* LPM1 (CPU, MCLK are disabled. DCO and DC generator are
  57. disabled if the DCO is not used for SMCLK. ACLK is
  58. active.)
  59. */
  60. else if (!cpu->sr.SCG1 && cpu->sr.SCG0 && !cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  61. }
  62. /* LPM2 (CPU, MCLK, SMCLK, DCO are disabled. DC generator remains enabled.
  63. ACLK is active.) */
  64. else if (cpu->sr.SCG1 && !cpu->sr.SCG0 && !cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  65. }
  66. // LPM3 (CPU, MCLK, SMCLK, DCO are disabled. DC generatordisabled.ACLK active.
  67. else if (cpu->sr.SCG1 && cpu->sr.SCG0 && !cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  68. }
  69. // LPM4 (CPU and all clocks are disabled)
  70. else if (cpu->sr.SCG1 && cpu->sr.SCG0 && cpu->sr.OSCOFF && cpu->sr.CPUOFF){
  71. }
  72. // HANDLE DCO --------------------
  73. uint8_t DCOx = DCOCTL >> 5;
  74. uint8_t MODx = DCOCTL & 0x1F;
  75. uint8_t RSELx = BCSCTL1 & 0x0F;
  76. // Default state of BCM after reset ~1.03 MHz
  77. if (DCOx == 0b011 && RSELx == 0b0111) {
  78. bcm->dco_freq = 1030000;
  79. bcm->dco_period = 971;
  80. bcm->dco_pulse_width = 485;
  81. }
  82. // 16 Mhz
  83. else if (DCOx == 0b100 && RSELx == 0b1111) {
  84. bcm->dco_freq = 16000000;
  85. bcm->dco_period = 63;
  86. bcm->dco_pulse_width = 31;
  87. }
  88. // 12 MHz
  89. else if (DCOx == 0b100 && RSELx == 0b1110) {
  90. bcm->dco_freq = 12000000;
  91. bcm->dco_period = 83;
  92. bcm->dco_pulse_width = 42;
  93. }
  94. // 8 Mhz
  95. else if (DCOx == 0b100 && RSELx == 0b1101) {
  96. bcm->dco_freq = 8000000;
  97. bcm->dco_period = 125;
  98. bcm->dco_pulse_width = 62;
  99. }
  100. // 1 MHz
  101. else if (DCOx == 0b110 && RSELx == 0b0110) {
  102. bcm->dco_freq = 1000000;
  103. bcm->dco_period = 1000;
  104. bcm->dco_pulse_width = 500;
  105. }
  106. // HANDLE LFXT1CLK -------------------
  107. uint8_t XTS = (BCSCTL1 >> 6) & 0x01; // LFXT1CLK select (high/low)
  108. }
  109. void setup_bcm (Emulator *emu)
  110. {
  111. Cpu *cpu = emu->cpu;
  112. Bcm *bcm = cpu->bcm;
  113. static const uint16_t DCOCTL_VLOC = 0x56;
  114. static const uint16_t BCSCTL1_VLOC = 0x57;
  115. static const uint16_t BCSCTL2_VLOC = 0x58;
  116. static const uint16_t BCSCTL3_VLOC = 0x53;
  117. static const uint16_t IE1_VLOC = 0x0;
  118. static const uint16_t IFG1_VLOC = 0x2;
  119. *(bcm->DCOCTL = (uint8_t *) get_addr_ptr(DCOCTL_VLOC)) = 0x60;
  120. *(bcm->BCSCTL1 = (uint8_t *) get_addr_ptr(BCSCTL1_VLOC)) = 0x87;
  121. *(bcm->BCSCTL2 = (uint8_t *) get_addr_ptr(BCSCTL2_VLOC)) = 0;
  122. *(bcm->BCSCTL3 = (uint8_t *) get_addr_ptr(BCSCTL3_VLOC)) = 0x5;
  123. *(bcm->IE1 = (uint8_t *) get_addr_ptr(IE1_VLOC)) = 0;
  124. *(bcm->IFG1 = (uint8_t *) get_addr_ptr(IFG1_VLOC)) = 0;
  125. // 1.03 MHz
  126. bcm->dco_freq = 1030000;
  127. bcm->dco_period = 971;
  128. bcm->dco_pulse_width = 970 / 2;
  129. }
  130. //uint64_t nanosec_diff(struct timespec *timeA_p, struct timespec *timeB_p)
  131. //{
  132. // return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec);
  133. //}
  134. double mclk_clock_nstime(Emulator *emu) {
  135. Cpu *cpu = emu->cpu;
  136. Bcm *bcm = cpu->bcm;
  137. double nsec;
  138. if (bcm->mclk_source == DCOCLK) {
  139. nsec = (1.0/(bcm->dco_freq/bcm->mclk_div))*1000000000.0;
  140. } else {
  141. nsec = (1.0/1030000) * 1000000000.0;
  142. }
  143. return nsec;
  144. }
  145. void mclk_wait_cycles (Emulator *emu, uint64_t cycles)
  146. {
  147. // Cpu *cpu = emu->cpu;
  148. // Bcm *bcm = cpu->bcm;
  149. //
  150. // uint64_t start = getnano();
  151. //
  152. //// uint64_t start, end;
  153. //// uint64_t i, elapsed_nsecs;
  154. // double thing = 1000;
  155. //
  156. // if (bcm->mclk_source == DCOCLK) {
  157. // thing = (1.0/(bcm->dco_freq/bcm->mclk_div))*1000000000.0;
  158. // }
  159. // thing *= cycles;
  160. //
  161. // if (last_nano > 0) {
  162. // thing -= (double)(start - last_nano);
  163. // }
  164. // if (thing > 0) {
  165. //// struct timespec tv;
  166. //// tv.tv_sec = 0;
  167. //// tv.tv_nsec = (long)thing;
  168. //// nanosleep(&tv, &tv);
  169. // usleep((long)(thing / 1000.0));
  170. // }
  171. //
  172. // last_nano = start;
  173. // return;
  174. /*
  175. for (i = 0;i < cycles;i++)
  176. {
  177. start = getnano();
  178. // clock_gettime(CLOCK_MONOTONIC, &start);
  179. while (true)
  180. {
  181. // clock_gettime(CLOCK_MONOTONIC, &end);
  182. end = getnano();
  183. elapsed_nsecs = end - start;//nanosec_diff(&end, &start);
  184. // Choose timing based on clock source
  185. if (bcm->mclk_source == DCOCLK)
  186. {
  187. double thing = (1.0/(bcm->dco_freq/bcm->mclk_div))*1000000000.0;
  188. if (elapsed_nsecs >= (uint64_t)thing)
  189. break;
  190. }
  191. else
  192. {
  193. puts("Error, clock source");
  194. }
  195. }
  196. }
  197. */
  198. }
  199. void smclk_wait_cycles (Emulator *emu, uint64_t cycles)
  200. {
  201. // Cpu *cpu = emu->cpu;
  202. // Bcm *bcm = cpu->bcm;
  203. //
  204. // uint64_t start, end;
  205. // uint64_t i, elapsed_nsecs;
  206. //
  207. // for (i = 0;i < cycles;i++) {
  208. // start = getnano();
  209. // // clock_gettime(CLOCK_MONOTONIC, &start);
  210. //
  211. // while (true) {
  212. // end = getnano();
  213. //// clock_gettime(CLOCK_MONOTONIC, &end);
  214. // elapsed_nsecs = end - start;//nanosec_diff(&end, &start);
  215. //
  216. // // Choose timing based on clock source
  217. // if (bcm->mclk_source == DCOCLK) {
  218. // //printf("div: %llu\n",
  219. // //(long long unsigned)(1/(bcm->dco_freq/bcm->mclk_div)));
  220. //
  221. // double thing = (1.0/(bcm->dco_freq/bcm->mclk_div))*1000000000.0;
  222. //
  223. // if (elapsed_nsecs >= (uint64_t)thing) {
  224. // break;
  225. // }
  226. // }
  227. // else {
  228. // puts("Error, clock source");
  229. // }
  230. //
  231. // }
  232. // }
  233. }
  234. /*
  235. /*
  236. // Start Sources DCO, etc
  237. pthread_t pp;
  238. if ( pthread_create(&pp, NULL, DCO_source, (void *)emu ) ) {
  239. printf("Error creating DCO thread\n");
  240. exit(1);
  241. }
  242. void *DCO_source (void *data)
  243. {
  244. Emulator *emu = (Emulator *)data;
  245. Bcm *bcm = emu->cpu->bcm;
  246. printf("In source thread...\n");
  247. struct timespec start, end;
  248. uint64_t elapsed_nsecs;
  249. uint64_t trimmer = 0;
  250. while (true) {
  251. clock_gettime(CLOCK_MONOTONIC, &start);
  252. while (true) {
  253. clock_gettime(CLOCK_MONOTONIC, &end);
  254. elapsed_nsecs = nanosec_diff(&end, &start);
  255. if (elapsed_nsecs >= bcm->dco_period) break;
  256. }
  257. }
  258. /*
  259. while (true) {
  260. clock_gettime(CLOCK_MONOTONIC, &start);
  261. bcm->dco_high = true;
  262. while (true) {
  263. clock_gettime(CLOCK_MONOTONIC, &end);
  264. elapsed_nsecs = nanosec_diff(&end, &start);
  265. if (elapsed_nsecs >= bcm->dco_pulse_width) {
  266. bcm->dco_high = false;
  267. }
  268. if (elapsed_nsecs >= bcm->dco_period) break;
  269. }
  270. }
  271. return NULL;
  272. }
  273. */