| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- import math
- import os
- from multiprocessing import Pool
- from sklearn.metrics import accuracy_score
- from defs import Modulator, Demodulator, Channel
- from models.basic import AWGNChannel
- from misc import generate_random_bit_array
- from models.optical_channel import OpticalChannel
- import matplotlib.pyplot as plt
- import numpy as np
- CPU_COUNT = os.environ.get("CPU_COUNT", os.cpu_count())
- def show_constellation(mod: Modulator, chan: Channel, demod: Demodulator, samples=1000):
- x = generate_random_bit_array(samples)
- x_mod = mod.forward(x)
- x_chan = chan.forward(x_mod)
- x_demod = demod.forward(x_chan)
- plt.plot(x_chan.rect_x[x], x_chan.rect_y[x], '+')
- plt.plot(x_chan.rect_x[:, 0][~x], x_chan.rect_y[:, 1][~x], '+')
- plt.plot(x_mod.rect_x[:, 0], x_mod.rect_y[:, 1], 'ro')
- axes = plt.gca()
- axes.set_xlim([-2, +2])
- axes.set_ylim([-2, +2])
- plt.grid()
- plt.show()
- print('Accuracy : ' + str())
- def get_ber(mod, chan, demod, samples=1000):
- if samples % mod.N:
- samples += mod.N - (samples % mod.N)
- x = generate_random_bit_array(samples)
- x_mod = mod.forward(x)
- x_chan = chan.forward(x_mod)
- x_demod = demod.forward(x_chan)
- return 1 - accuracy_score(x, x_demod)
- def get_AWGN_ber(mod, demod, samples=1000, start=-8., stop=5., steps=30):
- ber_x = np.linspace(start, stop, steps)
- ber_y = []
- for noise in ber_x:
- ber_y.append(get_ber(mod, AWGNChannel(noise), demod, samples=samples))
- return ber_x, ber_y
- def __calc_ber(packed):
- # This function has to be outside get_Optical_ber in order to be pickled by pool
- mod, demod, noise, length, pulse_shape, samples = packed
- tx_channel = OpticalChannel(noise_level=noise, dispersion=-21.7, symbol_rate=10e9, sample_rate=400e9,
- length=length, pulse_shape=pulse_shape, sqrt_out=True)
- return get_ber(mod, tx_channel, demod, samples=samples)
- def get_Optical_ber(mod, demod, samples=1000, start=-8., stop=5., steps=30, length=100, pulse_shape='rect'):
- ber_x = np.linspace(start, stop, steps)
- ber_y = []
- print(f"Computing Optical BER.. 0/{len(ber_x)}", end='')
- with Pool(CPU_COUNT) as pool:
- packed_args = [(mod, demod, noise, length, pulse_shape, samples) for noise in ber_x]
- for i, ber in enumerate(pool.imap(__calc_ber, packed_args)):
- ber_y.append(ber)
- i += 1 # just offset by 1
- print(f"\rComputing Optical BER.. {i}/{len(ber_x)} ({i * 100 / len(ber_x):6.2f}%)", end='')
- print()
- return ber_x, ber_y
- def get_SNR(mod, demod, ber_func=get_Optical_ber, samples=1000, start=-5, stop=15, **ber_kwargs):
- """
- SNR for optics and RF should be calculated the same, that is A^2
- Because P∝V² and P∝I²
- """
- x_mod = mod.forward(generate_random_bit_array(samples * mod.N))
- sig_power = [A ** 2 for A in x_mod.amplitude]
- av_sig_pow = np.mean(sig_power)
- av_sig_pow = math.log(av_sig_pow, 10)
- noise_start = -start + av_sig_pow
- noise_stop = -stop + av_sig_pow
- ber_x, ber_y = ber_func(mod, demod, samples, noise_start, noise_stop, **ber_kwargs)
- SNR = -ber_x + av_sig_pow
- return SNR, ber_y
|