| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- import defs
- import numpy as np
- import math
- import misc
- from scipy.spatial import cKDTree
- from os import path
- ALPHABET_DIR = "./alphabets"
- # def _make_gray(n):
- # if n <= 0:
- # return []
- # arr = ['0', '1']
- # i = 2
- # while True:
- # if i >= 1 << n:
- # break
- # for j in range(i - 1, -1, -1):
- # arr.append(arr[j])
- # for j in range(i):
- # arr[j] = "0" + arr[j]
- # for j in range(i, 2 * i):
- # arr[j] = "1" + arr[j]
- # i = i << 1
- # return list(map(lambda x: int(x, 2), arr))
- #
- #
- # def _gen_mary_alphabet(size, gray=True, polar=True):
- # alphabet = np.zeros((size, 2))
- # N = math.ceil(math.sqrt(size))
- #
- # # if sqrt(size) != size^2 (not a perfect square),
- # # skip defines how many corners to cut off.
- # skip = 0
- # if N ** 2 > size:
- # skip = int(math.sqrt((N ** 2 - size) // 4))
- #
- # step = 2 / (N - 1)
- # skipped = 0
- # for x in range(N):
- # for y in range(N):
- # i = x * N + y - skipped
- # if i >= size:
- # break
- # # Reverse y every odd column
- # if x % 2 == 0 and N < 4:
- # y = N - y - 1
- # if skip > 0:
- # if (x < skip or x + 1 > N - skip) and \
- # (y < skip or y + 1 > N - skip):
- # skipped += 1
- # continue
- # # Exception for 3-ary alphabet, skip centre point
- # if size == 8 and x == 1 and y == 1:
- # skipped += 1
- # continue
- # alphabet[i, :] = [step * x - 1, step * y - 1]
- # if gray:
- # shape = alphabet.shape
- # d1 = 4 if N > 4 else 2 ** N // 4
- # g1 = np.array([0, 1, 3, 2])
- # g2 = g1[:d1]
- # hypershape = (d1, 4, 2)
- # if N > 4:
- # hypercube = alphabet.reshape(hypershape + (N-4, ))
- # hypercube = hypercube[:, g1, :, :][g2, :, :, :]
- # else:
- # hypercube = alphabet.reshape(hypershape)
- # hypercube = hypercube[:, g1, :][g2, :, :]
- # alphabet = hypercube.reshape(shape)
- # if polar:
- # alphabet = misc.rect2polar(alphabet)
- # return alphabet
- def load_alphabet(name, polar=True):
- apath = path.join(ALPHABET_DIR, name + '.a')
- if not path.exists(apath):
- raise ValueError(f"Alphabet '{name}' does not exist")
- data = []
- indexes = []
- with open(apath, 'r') as f:
- header = f.readline().lower()
- if 'd' not in header and 'r' not in header:
- raise ValueError(f"Alphabet {name} header does not specify valid format")
- for i, row in enumerate(f.readlines()):
- row = row.strip()
- if len(row) == 0:
- continue
- cols = row.split(',')
- try:
- if len(cols) == 3:
- indexes.append(int(cols[0], 2))
- x = float(cols[1])
- y = float(cols[2])
- elif len(cols) == 2:
- indexes.append(i)
- x = float(cols[0])
- y = float(cols[1])
- else:
- raise ValueError()
- if 'd' in header:
- p = y*math.pi/180
- y = math.sin(p) * x
- x = math.cos(p) * x
- data.append((x, y))
- except ValueError:
- raise ValueError(f"Alphabet {name} line {i+1}: '{row}' has invalid values")
- data2 = [None] * len(data)
- for i, d in enumerate(data):
- data2[indexes[i]] = d
- arr = np.array(data2, dtype=float)
- if polar:
- arr = misc.rect2polar(arr)
- return arr
- class BypassChannel(defs.Channel):
- def forward(self, values):
- return values
- class AWGNChannel(defs.Channel):
- def __init__(self, noise_level, **kwargs):
- """
- :param noise_level: in dB
- """
- super().__init__(**kwargs)
- self.noise = 10 ** (noise_level / 10)
- def forward(self, values):
- a = np.random.normal(0, 1, values.shape[0]) * self.noise
- p = np.random.normal(0, 1, values.shape[0]) * self.noise
- f = np.zeros(values.shape[0])
- noise_mat = np.c_[a, p, f]
- return values + noise_mat
- class BPSKMod(defs.Modulator):
- def __init__(self, carrier_f, **kwargs):
- super().__init__(2, **kwargs)
- self.f = carrier_f
- def forward(self, binary: np.ndarray):
- a = np.ones(binary.shape[0])
- p = np.zeros(binary.shape[0])
- p[binary == True] = np.pi
- f = np.zeros(binary.shape[0]) + self.f
- return np.c_[a, p, f]
- class BPSKDemod(defs.Demodulator):
- def __init__(self, carrier_f, bandwidth, **kwargs):
- """
- :param carrier_f: Carrier frequency
- :param bandwidth: demodulator bandwidth
- """
- super().__init__(2, **kwargs)
- self.upper_f = carrier_f + bandwidth / 2
- self.lower_f = carrier_f - bandwidth / 2
- def forward(self, values):
- # TODO: Channel noise simulator for frequency component?
- # for now we only care about amplitude and phase
- ap = np.delete(values, 2, 1)
- ap = misc.polar2rect(ap)
- result = np.ones(values.shape[0], dtype=bool)
- result[ap[:, 0] > 0] = False
- return result
- class AlphabetMod(defs.Modulator):
- def __init__(self, modulation, carrier_f):
- # if N < 2:
- # raise ValueError("M-ary modulator N value has to be larger than 1")
- self.alphabet = load_alphabet(modulation)
- super().__init__(self.alphabet.shape[0])
- self.f = carrier_f
- self.mult_mat = np.array([2 ** i for i in range(self.N)])
- def forward(self, binary):
- if binary.shape[0] % self.N > 0:
- to_add = self.N - binary.shape[0] % self.N
- binary = np.concatenate((binary, np.zeros(to_add, bool)))
- reshaped = binary.reshape((binary.shape[0] // self.N, self.N))
- indices = np.matmul(reshaped, self.mult_mat)
- values = self.alphabet[indices, :]
- a = values[:, 0]
- p = values[:, 1]
- f = np.zeros(reshaped.shape[0]) + self.f
- return np.c_[a, p, f] #, indices
- class AlphabetDemod(defs.Demodulator):
- def __init__(self, modulation, carrier_f):
- # if N < 2:
- # raise ValueError("M-ary modulator N value has to be larger than 1")
- self.alphabet = load_alphabet(modulation, polar=False)
- super().__init__(self.alphabet.shape[0])
- self.f = carrier_f
- # self.alphabet = _gen_mary_alphabet(self.alphabet_size, gray=gray, polar=False)
- self.ktree = cKDTree(self.alphabet)
- def forward(self, binary):
- binary = binary[:, :2] # ignore frequency
- rbin = misc.polar2rect(binary)
- indices = self.ktree.query(rbin)[1]
- # Converting indices to bite array
- # FIXME: unpackbits requires 8bit inputs, thus largest demodulation is 256-QAM
- values = np.unpackbits(np.array([indices], dtype=np.uint8).T, bitorder='little', axis=1)
- return values[:, :self.N].reshape((-1,)).astype(bool) #, indices
|