| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405 |
- import numpy as np
- import matplotlib.pyplot as plt
- import scipy
- from scipy import interpolate
- import tensorflow as tf
- from tensorflow.keras import layers, losses
- import math
- class ExtractCentralMessage(layers.Layer):
- def __init__(self, messages_per_block, samples_per_symbol):
- """
- A keras layer that extracts the central message(symbol) in a block.
- :param messages_per_block: Total number of messages in transmission block
- :param samples_per_symbol: Number of samples per transmitted symbol
- """
- super(ExtractCentralMessage, self).__init__()
- temp_w = np.zeros((messages_per_block * samples_per_symbol, samples_per_symbol))
- i = np.identity(samples_per_symbol)
- begin = int(samples_per_symbol * ((messages_per_block - 1) / 2))
- end = int(samples_per_symbol * ((messages_per_block + 1) / 2))
- temp_w[begin:end, :] = i
- self.w = tf.convert_to_tensor(temp_w, dtype=tf.float32)
- def call(self, inputs, **kwargs):
- return tf.matmul(inputs, self.w)
- class AwgnChannel(layers.Layer):
- def __init__(self, rx_stddev=0.1):
- """
- A additive white gaussian noise channel model. The GaussianNoise class is utilized to prevent identical noise
- being applied every time the call function is called.
- :param rx_stddev: Standard deviation of receiver noise (due to e.g. TIA circuit)
- """
- super(AwgnChannel, self).__init__()
- self.noise_layer = layers.GaussianNoise(rx_stddev)
- def call(self, inputs, **kwargs):
- return self.noise_layer.call(inputs, training=True)
- class DigitizationLayer(layers.Layer):
- def __init__(self,
- fs,
- num_of_samples,
- lpf_cutoff=32e9,
- q_stddev=0.1):
- """
- This layer simulated the finite bandwidth of the hardware by means of a low pass filter. In addition to this,
- artefacts casued by quantization is modelled by the addition of white gaussian noise of a given stddev.
- :param fs: Sampling frequency of the simulation in Hz
- :param num_of_samples: Total number of samples in the input
- :param lpf_cutoff: Cutoff frequency of LPF modelling finite bandwidth in ADC/DAC
- :param q_stddev: Standard deviation of quantization noise at ADC/DAC
- """
- super(DigitizationLayer, self).__init__()
- self.noise_layer = layers.GaussianNoise(q_stddev)
- freq = np.fft.fftfreq(num_of_samples, d=1 / fs)
- temp = np.ones(freq.shape)
- for idx, val in np.ndenumerate(freq):
- if np.abs(val) > lpf_cutoff:
- temp[idx] = 0
- self.lpf_multiplier = tf.convert_to_tensor(temp, dtype=tf.complex64)
- def call(self, inputs, **kwargs):
- complex_in = tf.cast(inputs, dtype=tf.complex64)
- val_f = tf.signal.fft(complex_in)
- filtered_f = tf.math.multiply(self.lpf_multiplier, val_f)
- filtered_t = tf.signal.ifft(filtered_f)
- real_t = tf.cast(filtered_t, dtype=tf.float32)
- noisy = self.noise_layer.call(real_t, training=True)
- return noisy
- class OpticalChannel(layers.Layer):
- def __init__(self,
- fs,
- num_of_samples,
- dispersion_factor,
- fiber_length,
- lpf_cutoff=32e9,
- rx_stddev=0.03,
- q_stddev=0.01):
- """
- A channel model that simulates chromatic dispersion, non-linear photodiode detection, finite bandwidth of
- ADC/DAC as well as additive white gaussian noise in optical communication channels.
- :param fs: Sampling frequency of the simulation in Hz
- :param num_of_samples: Total number of samples in the input
- :param dispersion_factor: Dispersion factor in s^2/km
- :param fiber_length: Length of fiber to model in km
- :param lpf_cutoff: Cutoff frequency of LPF modelling finite bandwidth in ADC/DAC
- :param rx_stddev: Standard deviation of receiver noise (due to e.g. TIA circuit)
- :param q_stddev: Standard deviation of quantization noise at ADC/DAC
- """
- super(OpticalChannel, self).__init__()
- self.noise_layer = layers.GaussianNoise(rx_stddev)
- self.digitization_layer = DigitizationLayer(fs=fs,
- num_of_samples=num_of_samples,
- lpf_cutoff=lpf_cutoff,
- q_stddev=q_stddev)
- self.flatten_layer = layers.Flatten()
- self.fs = fs
- self.freq = tf.convert_to_tensor(np.fft.fftfreq(num_of_samples, d=1 / fs), dtype=tf.complex128)
- self.multiplier = tf.math.exp(0.5j * dispersion_factor * fiber_length * tf.math.square(2 * math.pi * self.freq))
- def call(self, inputs, **kwargs):
- # DAC LPF and noise
- dac_out = self.digitization_layer(inputs)
- # Chromatic Dispersion
- complex_val = tf.cast(dac_out, dtype=tf.complex128)
- val_f = tf.signal.fft(complex_val)
- disp_f = tf.math.multiply(val_f, self.multiplier)
- disp_t = tf.signal.ifft(disp_f)
- # Squared-Law Detection
- pd_out = tf.square(tf.abs(disp_t))
- # Casting back to floatx
- real_val = tf.cast(pd_out, dtype=tf.float32)
- # Adding photo-diode receiver noise
- rx_signal = self.noise_layer.call(real_val, training=True)
- # ADC LPF and noise
- adc_out = self.digitization_layer(rx_signal)
- return adc_out
- SAMPLING_FREQUENCY = 336e9
- CARDINALITY = 4
- SAMPLES_PER_SYMBOL = 128
- MESSAGES_PER_BLOCK = 9
- DISPERSION_FACTOR = -21.7 * 1e-24
- FIBER_LENGTH = 50
- optical_channel = OpticalChannel(fs=SAMPLING_FREQUENCY,
- num_of_samples=80,
- dispersion_factor=DISPERSION_FACTOR,
- fiber_length=FIBER_LENGTH)
- K = 64 # number of OFDM subcarriers
- CP = K//4 # length of the cyclic prefix: 25% of the block
- P = 8 # number of pilot carriers per OFDM block
- pilotValue = 3+3j # The known value each pilot transmits
- allCarriers = np.arange(K) # indices of all subcarriers ([0, 1, ... K-1])
- pilotCarriers = allCarriers[::K//P] # Pilots is every (K/P)th carrier.
- # For convenience of channel estimation, let's make the last carriers also be a pilot
- pilotCarriers = np.hstack([pilotCarriers, np.array([allCarriers[-1]])])
- P = P+1
- # data carriers are all remaining carriers
- dataCarriers = np.delete(allCarriers, pilotCarriers)
- print ("allCarriers: %s" % allCarriers)
- print ("pilotCarriers: %s" % pilotCarriers)
- print ("dataCarriers: %s" % dataCarriers)
- plt.plot(pilotCarriers, np.zeros_like(pilotCarriers), 'bo', label='pilot')
- plt.plot(dataCarriers, np.zeros_like(dataCarriers), 'ro', label='data')
- mu = 4 # bits per symbol (i.e. 16QAM)
- payloadBits_per_OFDM = len(dataCarriers)*mu # number of payload bits per OFDM symbol
- mapping_table = {
- (0,0,0,0) : -3-3j,
- (0,0,0,1) : -3-1j,
- (0,0,1,0) : -3+3j,
- (0,0,1,1) : -3+1j,
- (0,1,0,0) : -1-3j,
- (0,1,0,1) : -1-1j,
- (0,1,1,0) : -1+3j,
- (0,1,1,1) : -1+1j,
- (1,0,0,0) : 3-3j,
- (1,0,0,1) : 3-1j,
- (1,0,1,0) : 3+3j,
- (1,0,1,1) : 3+1j,
- (1,1,0,0) : 1-3j,
- (1,1,0,1) : 1-1j,
- (1,1,1,0) : 1+3j,
- (1,1,1,1) : 1+1j
- }
- mapping_table_dec = {
- (0) : -3-3j,
- (1) : -3-1j,
- (2) : -3+3j,
- (3) : -3+1j,
- (4) : -1-3j,
- (5) : -1-1j,
- (6) : -1+3j,
- (7) : -1+1j,
- (8) : 3-3j,
- (9) : 3-1j,
- (10) : 3+3j,
- (11) : 3+1j,
- (12) : 1-3j,
- (13) : 1-1j,
- (14) : 1+3j,
- (15) : 1+1j
- }
- for b3 in [0, 1]:
- for b2 in [0, 1]:
- for b1 in [0, 1]:
- for b0 in [0, 1]:
- B = (b3, b2, b1, b0)
- Q = mapping_table[B]
- plt.plot(Q.real, Q.imag, 'bo')
- plt.text(Q.real, Q.imag+0.2, "".join(str(x) for x in B), ha='center')
- demapping_table = {v: k for k, v in mapping_table.items()}
- # Replace with our channel
- channelResponse = np.array([1, 0, 0.3+0.3j]) # the impulse response of the wireless channel
- H_exact = np.fft.fft(channelResponse, K)
- plt.plot(allCarriers, abs(H_exact))
- SNRdb = 25 # signal to noise-ratio in dB at the receiver
- # Here
- #water filling, gradient decent methods for optimising the symbol mapping, instead of 16 QAM
- bits = np.random.binomial(n=1, p=0.5, size=(payloadBits_per_OFDM, ))
- print ("Bits count: ", len(bits))
- print ("First 20 bits: ", bits[:20])
- print ("Mean of bits (should be around 0.5): ", np.mean(bits))
- def SP(bits):
- return bits.reshape((len(dataCarriers), mu))
- bits_SP = SP(bits)
- print ("First 5 bit groups")
- print (bits_SP[:5,:])
- def generate_random_inputs(num_of_blocks, return_vals=False):
- """
- A method that generates a list of one-hot encoded messages. This is utilized for generating the test/train data.
- :param num_of_blocks: Number of blocks to generate. A block contains multiple messages to be transmitted in
- consecutively to model ISI. The central message in a block is returned as the label for training.
- :param return_vals: If true, the raw decimal values of the input sequence will be returned
- """
- rand_int = np.random.randint(16, size=(num_of_blocks, 1))
- # cat = [np.arange(self.cardinality)]
- # enc = OneHotEncoder(handle_unknown='ignore', sparse=False, categories=cat)
- # out = enc.fit_transform(rand_int)
- # for symbol in rand_int:
- #out_arr = np.reshape(rand_int, (num_of_blocks, self.messages_per_block))
- #t_out_arr = np.repeat(out_arr, self.samples_per_symbol, axis=1)
- #mid_idx = int((self.messages_per_block - 1) / 2)
- #if return_vals:
- # out_val = np.reshape(rand_int, (num_of_blocks, self.messages_per_block, 1))
- # return out_val, out_arr, out_arr[:, mid_idx, :]
- return rand_int
- bits_SP1 = generate_random_inputs(num_of_blocks=1000).astype('uint8')
- #bits_SP11 = np.unpackbits(bits_SP1, axis=1)
- def Mapping(bits):
- return np.array([mapping_table[tuple(b)] for b in bits])
- def Mapping_dec(bits):
- return np.array([mapping_table_dec[tuple(b)] for b in bits])
- QAM = Mapping(bits_SP)
- QAM1 = Mapping_dec(bits_SP1)
- print("First 5 QAM symbols and bits:")
- print(bits_SP[:5,:])
- print(QAM[:5])
- def OFDM_symbol(QAM_payload):
- symbol = np.zeros(K, dtype=complex) # the overall K subcarriers
- symbol[pilotCarriers] = pilotValue # allocate the pilot subcarriers
- symbol[dataCarriers] = QAM_payload # allocate the pilot subcarriers
- return symbol
- OFDM_data = OFDM_symbol(QAM)
- print("Number of OFDM carriers in frequency domain: ", len(OFDM_data))
- def IDFT(OFDM_data):
- return np.fft.ifft(OFDM_data)
- OFDM_time = IDFT(OFDM_data)
- print("Number of OFDM samples in time-domain before CP: ", len(OFDM_time))
- def addCP(OFDM_time):
- cp = OFDM_time[-CP:] # take the last CP samples ...
- return np.hstack([cp, OFDM_time]) # ... and add them to the beginning
- OFDM_withCP = addCP(OFDM_time)
- print("Number of OFDM samples in time domain with CP: ", len(OFDM_withCP))
- def channel(signal):
- convolved = np.convolve(signal, channelResponse)
- signal_power = np.mean(abs(convolved ** 2))
- sigma2 = signal_power * 10 ** (-SNRdb / 10) # calculate noise power based on signal power and SNR
- print("RX Signal power: %.4f. Noise power: %.4f" % (signal_power, sigma2))
- # Generate complex noise with given variance
- noise = np.sqrt(sigma2 / 2) * (np.random.randn(*convolved.shape) + 1j * np.random.randn(*convolved.shape))
- return convolved + noise
- OFDM_TX = OFDM_withCP
- OFDM_RX = channel(OFDM_TX)
- #OFDM_RX1 = optical_channel(OFDM_TX).numpy
- plt.figure(figsize=(8, 2))
- plt.plot(abs(OFDM_TX), label='TX signal')
- plt.plot(abs(OFDM_RX), label='RX signal')
- plt.legend(fontsize=10)
- plt.xlabel('Time')
- plt.ylabel('$|x(t)|$')
- plt.grid(True)
- def removeCP(signal):
- return signal[CP:(CP+K)]
- OFDM_RX_noCP = removeCP(OFDM_RX)
- def DFT(OFDM_RX):
- return np.fft.fft(OFDM_RX)
- OFDM_demod = DFT(OFDM_RX_noCP)
- def channelEstimate(OFDM_demod):
- pilots = OFDM_demod[pilotCarriers] # extract the pilot values from the RX signal
- Hest_at_pilots = pilots / pilotValue # divide by the transmitted pilot values
- # Perform interpolation between the pilot carriers to get an estimate
- # of the channel in the data carriers. Here, we interpolate absolute value and phase
- # separately
- Hest_abs = interpolate.interp1d(pilotCarriers, abs(Hest_at_pilots), kind='linear')(allCarriers)
- Hest_phase = interpolate.interp1d(pilotCarriers, np.angle(Hest_at_pilots), kind='linear')(allCarriers)
- Hest = Hest_abs * np.exp(1j * Hest_phase)
- plt.plot(allCarriers, abs(H_exact), label='Correct Channel')
- plt.stem(pilotCarriers, abs(Hest_at_pilots), label='Pilot estimates')
- plt.plot(allCarriers, abs(Hest), label='Estimated channel via interpolation')
- plt.grid(True)
- plt.xlabel('Carrier index')
- plt.ylabel('$|H(f)|$')
- plt.legend(fontsize=10)
- plt.ylim(0, 2)
- return Hest
- Hest = channelEstimate(OFDM_demod)
- def equalize(OFDM_demod, Hest):
- return OFDM_demod / Hest
- equalized_Hest = equalize(OFDM_demod, Hest)
- def get_payload(equalized):
- return equalized[dataCarriers]
- QAM_est = get_payload(equalized_Hest)
- plt.plot(QAM_est.real, QAM_est.imag, 'bo');
- def Demapping(QAM):
- # array of possible constellation points
- constellation = np.array([x for x in demapping_table.keys()])
- # calculate distance of each RX point to each possible point
- dists = abs(QAM.reshape((-1, 1)) - constellation.reshape((1, -1)))
- # for each element in QAM, choose the index in constellation
- # that belongs to the nearest constellation point
- const_index = dists.argmin(axis=1)
- # get back the real constellation point
- hardDecision = constellation[const_index]
- # transform the constellation point into the bit groups
- return np.vstack([demapping_table[C] for C in hardDecision]), hardDecision
- PS_est, hardDecision = Demapping(QAM_est)
- for qam, hard in zip(QAM_est, hardDecision):
- plt.plot([qam.real, hard.real], [qam.imag, hard.imag], 'b-o');
- plt.plot(hardDecision.real, hardDecision.imag, 'ro')
- def PS(bits):
- return bits.reshape((-1,))
- bits_est = PS(PS_est)
- print("Obtained Bit error rate: ", np.sum(abs(bits-bits_est))/len(bits))
|