| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- import matplotlib.pyplot as plt
- import defs
- import numpy as np
- import math
- from scipy.fft import fft, ifft
- class OpticalChannel(defs.Channel):
- def __init__(self, noise_level, dispersion, symbol_rate, sample_rate, length, show_graphs=False, **kwargs):
- """
- :param noise_level: Noise level in dB
- :param dispersion: dispersion coefficient is ps^2/km
- :param symbol_rate: Symbol rate of modulated signal in Hz
- :param sample_rate: Sample rate of time-domain model (time steps in simulation) in Hz
- :param length: fibre length in km
- :param show_graphs: if graphs should be displayed or not
- Optical Channel class constructor
- """
- super().__init__(**kwargs)
- self.noise = 10 ** (noise_level / 10)
- self.dispersion = dispersion # * 1e-24 # Converting from ps^2/km to s^2/km
- self.symbol_rate = symbol_rate
- self.symbol_period = 1 / self.symbol_rate
- self.sample_rate = sample_rate
- self.sample_period = 1 / self.sample_rate
- self.length = length
- self.show_graphs = show_graphs
- def __get_time_domain(self, symbol_vals):
- samples_per_symbol = int(self.sample_rate / self.symbol_rate)
- samples = int(symbol_vals.shape[0] * samples_per_symbol)
- symbol_vals_a = np.repeat(symbol_vals, repeats=samples_per_symbol, axis=0)
- t = np.linspace(start=0, stop=samples * self.sample_period, num=samples)
- val_t = symbol_vals_a[:, 0] * np.cos(2 * math.pi * symbol_vals_a[:, 2] * t + symbol_vals_a[:, 1])
- return t, val_t
- def __time_to_frequency(self, values):
- val_f = fft(values)
- f = np.linspace(0.0, 1 / (2 * self.sample_period), (values.size // 2))
- f_neg = -1 * np.flip(f)
- f = np.concatenate((f, f_neg), axis=0)
- return f, val_f
- def __frequency_to_time(self, values):
- val_t = ifft(values)
- t = np.linspace(start=0, stop=values.size * self.sample_period, num=values.size)
- return t, val_t
- def __apply_dispersion(self, values):
- # Obtain fft
- f, val_f = self.__time_to_frequency(values)
- if self.show_graphs:
- plt.plot(f, val_f)
- plt.title('frequency domain (pre-distortion)')
- plt.show()
- # Apply distortion
- dist_val_f = val_f * np.exp(0.5j * self.dispersion * self.length * np.power(2 * math.pi * f, 2))
- if self.show_graphs:
- plt.plot(f, dist_val_f)
- plt.title('frequency domain (post-distortion)')
- plt.show()
- # Inverse fft
- t, val_t = self.__frequency_to_time(dist_val_f)
- return t, val_t
- def __photodiode_detection(self, values):
- t = np.linspace(start=0, stop=values.size * self.sample_period, num=values.size)
- val_t = np.power(np.absolute(values), 2)
- return t, val_t
- def forward(self, values):
- # Converting APF representation to time-series
- t, val_t = self.__get_time_domain(values)
- if self.show_graphs:
- plt.plot(t, val_t)
- plt.title('time domain (raw)')
- plt.show()
- # Adding AWGN
- val_t += np.random.normal(0, 1, val_t.shape) * self.noise
- if self.show_graphs:
- plt.plot(t, val_t)
- plt.title('time domain (AWGN)')
- plt.show()
- # Applying chromatic dispersion
- t, val_t = self.__apply_dispersion(val_t)
- if self.show_graphs:
- plt.plot(t, val_t)
- plt.title('time domain (post-distortion)')
- plt.show()
- # Photodiode Detection
- t, val_t = self.__photodiode_detection(val_t)
- if self.show_graphs:
- plt.plot(t, val_t)
- plt.title('time domain (post-detection)')
- plt.show()
- return t, val_t
- if __name__ == '__main__':
- # Simple OOK modulation
- num_of_symbols = 10
- symbol_vals = np.zeros((num_of_symbols, 3))
- symbol_vals[:, 0] = np.random.randint(2, size=symbol_vals.shape[0])
- symbol_vals[:, 2] = 10e6
- channel = OpticalChannel(noise_level=-20, dispersion=-21.7, symbol_rate=100e3,
- sample_rate=500e6, length=100, show_graphs=True)
- time, v = channel.forward(symbol_vals)
|