| 12345678910111213141516171819202122 |
- import pandas as pd
- import seaborn as sns
- import matplotlib.pyplot as plt
- import numpy as np
- from sklearn.preprocessing import StandardScaler
- from sklearn.neighbors import KNeighborsClassifier
- class Model:
- def __init__(self):
- scaler = StandardScaler()
- def train(self, X_train, Y_train, X_test, Y_test, n_range=40):
- error_rate = []
- # Might take some time
- for i in range(1, n_range):
- knn = KNeighborsClassifier(n_neighbors=i)
- knn.fit(X_train, Y_train)
- pred_i = knn.predict(X_test)
- error_rate.append(np.mean(pred_i != Y_test))
-
|