autoencoder.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3. import tensorflow as tf
  4. from sklearn.metrics import accuracy_score
  5. from sklearn.model_selection import train_test_split
  6. from tensorflow.keras import layers, losses
  7. from tensorflow.keras.models import Model
  8. from tensorflow.python.keras.layers import LeakyReLU, ReLU
  9. # from functools import partial
  10. import misc
  11. import defs
  12. from models import basic
  13. import os
  14. # from tensorflow_model_optimization.python.core.quantization.keras import quantize, quantize_aware_activation
  15. from models.data import BinaryOneHotGenerator
  16. latent_dim = 64
  17. print("# GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
  18. class AutoencoderMod(defs.Modulator):
  19. def __init__(self, autoencoder):
  20. super().__init__(2 ** autoencoder.N)
  21. self.autoencoder = autoencoder
  22. def forward(self, binary: np.ndarray):
  23. reshaped = binary.reshape((-1, (self.N * self.autoencoder.parallel)))
  24. reshaped_ho = misc.bit_matrix2one_hot(reshaped)
  25. encoded = self.autoencoder.encoder(reshaped_ho)
  26. x = encoded.numpy()
  27. if self.autoencoder.bipolar:
  28. x = x * 2 - 1
  29. if self.autoencoder.parallel > 1:
  30. x = x.reshape((-1, self.autoencoder.signal_dim))
  31. f = np.zeros(x.shape[0])
  32. if self.autoencoder.signal_dim <= 1:
  33. p = np.zeros(x.shape[0])
  34. else:
  35. p = x[:, 1]
  36. x3 = misc.rect2polar(np.c_[x[:, 0], p, f])
  37. return basic.RFSignal(x3)
  38. class AutoencoderDemod(defs.Demodulator):
  39. def __init__(self, autoencoder):
  40. super().__init__(2 ** autoencoder.N)
  41. self.autoencoder = autoencoder
  42. def forward(self, values: defs.Signal) -> np.ndarray:
  43. if self.autoencoder.signal_dim <= 1:
  44. val = values.rect_x
  45. else:
  46. val = values.rect
  47. if self.autoencoder.parallel > 1:
  48. val = val.reshape((-1, self.autoencoder.parallel))
  49. decoded = self.autoencoder.decoder(val).numpy()
  50. result = misc.int2bit_array(decoded.argmax(axis=1), self.N * self.autoencoder.parallel)
  51. return result.reshape(-1, )
  52. class Autoencoder(Model):
  53. def __init__(self, N, channel, signal_dim=2, parallel=1, all_onehot=True, bipolar=True):
  54. super(Autoencoder, self).__init__()
  55. self.N = N
  56. self.parallel = parallel
  57. self.signal_dim = signal_dim
  58. self.bipolar = bipolar
  59. self._input_shape = 2 ** (N * parallel) if all_onehot else (2 ** N) * parallel
  60. self.encoder = tf.keras.Sequential()
  61. self.encoder.add(layers.Input(shape=(self._input_shape,)))
  62. self.encoder.add(layers.Dense(units=2 ** (N + 1)))
  63. self.encoder.add(LeakyReLU(alpha=0.001))
  64. # self.encoder.add(layers.Dropout(0.2))
  65. self.encoder.add(layers.Dense(units=2 ** (N + 1)))
  66. self.encoder.add(LeakyReLU(alpha=0.001))
  67. self.encoder.add(layers.Dense(units=signal_dim * parallel, activation="sigmoid"))
  68. # self.encoder.add(layers.ReLU(max_value=1.0))
  69. # self.encoder = quantize.quantize_model(self.encoder)
  70. self.decoder = tf.keras.Sequential()
  71. self.decoder.add(tf.keras.Input(shape=(signal_dim * parallel,)))
  72. self.decoder.add(layers.Dense(units=2 ** (N + 1)))
  73. # self.encoder.add(LeakyReLU(alpha=0.001))
  74. # self.decoder.add(layers.Dense(units=2 ** (N + 1)))
  75. # leaky relu with alpha=1 gives by far best results
  76. self.decoder.add(LeakyReLU(alpha=1))
  77. self.decoder.add(layers.Dense(units=self._input_shape, activation="softmax"))
  78. # self.randomiser = tf.random_normal_initializer(mean=0.0, stddev=0.1, seed=None)
  79. self.mod = None
  80. self.demod = None
  81. self.compiled = False
  82. if isinstance(channel, int) or isinstance(channel, float):
  83. self.channel = basic.AWGNChannel(channel)
  84. else:
  85. if not hasattr(channel, 'forward_tensor'):
  86. raise ValueError("Channel has no forward_tensor function")
  87. if not callable(channel.forward_tensor):
  88. raise ValueError("Channel.forward_tensor is not callable")
  89. self.channel = channel
  90. # self.decoder.add(layers.Softmax(units=4, dtype=bool))
  91. # [
  92. # layers.Input(shape=(28, 28, 1)),
  93. # layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=2),
  94. # layers.Conv2D(8, (3, 3), activation='relu', padding='same', strides=2)
  95. # ])
  96. # self.decoder = tf.keras.Sequential([
  97. # layers.Conv2DTranspose(8, kernel_size=3, strides=2, activation='relu', padding='same'),
  98. # layers.Conv2DTranspose(16, kernel_size=3, strides=2, activation='relu', padding='same'),
  99. # layers.Conv2D(1, kernel_size=(3, 3), activation='sigmoid', padding='same')
  100. # ])
  101. @property
  102. def all_layers(self):
  103. return self.layers[0].layers + self.layers[1].layers
  104. def call(self, x, **kwargs):
  105. signal = self.encoder(x)
  106. if self.bipolar:
  107. signal = signal * 2 - 1
  108. else:
  109. signal = tf.clip_by_value(signal, 0, 1)
  110. signal = self.channel.forward_tensor(signal)
  111. # encoded = encoded * 2 - 1
  112. # encoded = tf.clip_by_value(encoded, clip_value_min=0, clip_value_max=1, name=None)
  113. # noise = self.randomiser(shape=(-1, 2), dtype=tf.float32)
  114. # noise = np.random.normal(0, 1, (1, 2)) * self.noise
  115. # noisy = tf.convert_to_tensor(noise, dtype=tf.float32)
  116. decoded = self.decoder(signal)
  117. return decoded
  118. def fit_encoder(self, modulation, sample_size, train_size=0.8, epochs=1, batch_size=1, shuffle=False):
  119. alphabet = basic.load_alphabet(modulation, polar=False)
  120. if not alphabet.shape[0] == self.N ** 2:
  121. raise Exception("Cardinality of modulation scheme is different from cardinality of autoencoder!")
  122. x_train = np.random.randint(self.N ** 2, size=int(sample_size * train_size))
  123. y_train = alphabet[x_train]
  124. x_train_ho = np.zeros((int(sample_size * train_size), self.N ** 2))
  125. for idx, x in np.ndenumerate(x_train):
  126. x_train_ho[idx, x] = 1
  127. x_test = np.random.randint(self.N ** 2, size=int(sample_size * (1 - train_size)))
  128. y_test = alphabet[x_test]
  129. x_test_ho = np.zeros((int(sample_size * (1 - train_size)), self.N ** 2))
  130. for idx, x in np.ndenumerate(x_test):
  131. x_test_ho[idx, x] = 1
  132. self.encoder.compile(optimizer='adam', loss=tf.keras.losses.MeanSquaredError())
  133. self.encoder.fit(x_train_ho, y_train,
  134. epochs=epochs,
  135. batch_size=batch_size,
  136. shuffle=shuffle,
  137. validation_data=(x_test_ho, y_test))
  138. def fit_decoder(self, modulation, samples):
  139. samples = int(samples * 1.3)
  140. demod = basic.AlphabetDemod(modulation, 0)
  141. x = np.random.rand(samples, 2) * 2 - 1
  142. x = x.reshape((-1, 2))
  143. f = np.zeros(x.shape[0])
  144. xf = np.c_[x[:, 0], x[:, 1], f]
  145. y = demod.forward(basic.RFSignal(misc.rect2polar(xf)))
  146. y_ho = misc.bit_matrix2one_hot(y.reshape((-1, 4)))
  147. X_train, X_test, y_train, y_test = train_test_split(x, y_ho)
  148. self.decoder.compile(optimizer='adam', loss=tf.keras.losses.MeanSquaredError())
  149. self.decoder.fit(X_train, y_train, shuffle=False, validation_data=(X_test, y_test))
  150. y_pred = self.decoder(X_test).numpy()
  151. y_pred2 = np.zeros(y_test.shape, dtype=bool)
  152. y_pred2[np.arange(y_pred2.shape[0]), np.argmax(y_pred, axis=1)] = True
  153. print("Decoder accuracy: %.4f" % accuracy_score(y_pred2, y_test))
  154. def train(self, epoch_size=3e3, epochs=5):
  155. m = self.N * self.parallel
  156. x_train = BinaryOneHotGenerator(size=epoch_size, shape=m)
  157. x_test = BinaryOneHotGenerator(size=epoch_size*.3, shape=m)
  158. # test_samples = epoch_size
  159. # if test_samples % m:
  160. # test_samples += m - (test_samples % m)
  161. # x_test_array = misc.generate_random_bit_array(test_samples)
  162. # x_test = x_test_array.reshape((-1, m))
  163. # x_test_ho = misc.bit_matrix2one_hot(x_test)
  164. if not self.compiled:
  165. self.compile(optimizer='adam', loss=losses.MeanSquaredError())
  166. self.compiled = True
  167. # self.build((self._input_shape, -1))
  168. # self.summary()
  169. self.fit(x_train, shuffle=False, validation_data=x_test, epochs=epochs)
  170. # encoded_data = self.encoder(x_test_ho)
  171. # decoded_data = self.decoder(encoded_data).numpy()
  172. def get_modulator(self):
  173. if self.mod is None:
  174. self.mod = AutoencoderMod(self)
  175. return self.mod
  176. def get_demodulator(self):
  177. if self.demod is None:
  178. self.demod = AutoencoderDemod(self)
  179. return self.demod
  180. def view_encoder(encoder, N, samples=1000, title="Autoencoder generated alphabet"):
  181. test_values = misc.generate_random_bit_array(samples).reshape((-1, N))
  182. test_values_ho = misc.bit_matrix2one_hot(test_values)
  183. mvector = np.array([2 ** i for i in range(N)], dtype=int)
  184. symbols = (test_values * mvector).sum(axis=1)
  185. encoded = encoder(test_values_ho).numpy()
  186. if encoded.shape[1] == 1:
  187. encoded = np.c_[encoded, np.zeros(encoded.shape[0])]
  188. # encoded = misc.polar2rect(encoded)
  189. for i in range(2 ** N):
  190. xy = encoded[symbols == i]
  191. plt.plot(xy[:, 0], xy[:, 1], 'x', markersize=12, label=format(i, f'0{N}b'))
  192. plt.annotate(xy=[xy[:, 0].mean() + 0.01, xy[:, 1].mean() + 0.01], text=format(i, f'0{N}b'))
  193. plt.xlabel('Real')
  194. plt.ylabel('Imaginary')
  195. plt.title(title)
  196. # plt.legend()
  197. plt.show()
  198. pass
  199. if __name__ == '__main__':
  200. # (x_train, _), (x_test, _) = fashion_mnist.load_data()
  201. #
  202. # x_train = x_train.astype('float32') / 255.
  203. # x_test = x_test.astype('float32') / 255.
  204. #
  205. # print(f"Train data: {x_train.shape}")
  206. # print(f"Test data: {x_test.shape}")
  207. n = 4
  208. # samples = 1e6
  209. # x_train = misc.generate_random_bit_array(samples).reshape((-1, n))
  210. # x_train_ho = misc.bit_matrix2one_hot(x_train)
  211. # x_test_array = misc.generate_random_bit_array(samples * 0.3)
  212. # x_test = x_test_array.reshape((-1, n))
  213. # x_test_ho = misc.bit_matrix2one_hot(x_test)
  214. autoencoder = Autoencoder(n, -15)
  215. autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
  216. # autoencoder.fit_encoder(modulation='16qam',
  217. # sample_size=2e6,
  218. # train_size=0.8,
  219. # epochs=1,
  220. # batch_size=256,
  221. # shuffle=True)
  222. # view_encoder(autoencoder.encoder, n)
  223. # autoencoder.fit_decoder(modulation='16qam', samples=2e6)
  224. autoencoder.train()
  225. view_encoder(autoencoder.encoder, n)
  226. # view_encoder(autoencoder.encoder, n)
  227. # view_encoder(autoencoder.encoder, n)
  228. # autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
  229. #
  230. # autoencoder.fit(x_train_ho, x_train_ho,
  231. # epochs=1,
  232. # shuffle=False,
  233. # validation_data=(x_test_ho, x_test_ho))
  234. #
  235. # encoded_data = autoencoder.encoder(x_test_ho)
  236. # decoded_data = autoencoder.decoder(encoded_data).numpy()
  237. #
  238. # result = misc.int2bit_array(decoded_data.argmax(axis=1), n)
  239. # print("Accuracy: %.4f" % accuracy_score(x_test_array, result.reshape(-1, )))
  240. # view_encoder(autoencoder.encoder, n)
  241. pass