autoencoder.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3. import tensorflow as tf
  4. from sklearn.metrics import accuracy_score
  5. from tensorflow.keras import layers, losses
  6. from tensorflow.keras.models import Model
  7. import misc
  8. latent_dim = 64
  9. print("# GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
  10. class Autoencoder(Model):
  11. def __init__(self, nary):
  12. super(Autoencoder, self).__init__()
  13. self.latent_dim = latent_dim
  14. self.encoder = tf.keras.Sequential()
  15. self.encoder.add(tf.keras.Input(shape=(2**nary,), dtype=bool))
  16. self.encoder.add(layers.Dense(units=2**(nary+1)))
  17. # self.encoder.add(layers.Dropout(0.2))
  18. self.encoder.add(layers.Dense(units=2**(nary+1)))
  19. self.encoder.add(layers.Dense(units=2, activation="sigmoid"))
  20. # self.encoder.add(layers.ReLU(max_value=1.0))
  21. self.decoder = tf.keras.Sequential()
  22. self.decoder.add(tf.keras.Input(shape=(2,)))
  23. self.decoder.add(layers.Dense(units=2**(nary+1)))
  24. # self.decoder.add(layers.Dropout(0.2))
  25. self.decoder.add(layers.Dense(units=2**(nary+1)))
  26. self.decoder.add(layers.Dense(units=2**nary, activation="softmax"))
  27. self.randomiser = tf.random_normal_initializer(mean=0.0, stddev=0.1, seed=None)
  28. # self.decoder.add(layers.Softmax(units=4, dtype=bool))
  29. # [
  30. # layers.Input(shape=(28, 28, 1)),
  31. # layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=2),
  32. # layers.Conv2D(8, (3, 3), activation='relu', padding='same', strides=2)
  33. # ])
  34. # self.decoder = tf.keras.Sequential([
  35. # layers.Conv2DTranspose(8, kernel_size=3, strides=2, activation='relu', padding='same'),
  36. # layers.Conv2DTranspose(16, kernel_size=3, strides=2, activation='relu', padding='same'),
  37. # layers.Conv2D(1, kernel_size=(3, 3), activation='sigmoid', padding='same')
  38. # ])
  39. def call(self, x, **kwargs):
  40. encoded = self.encoder(x)
  41. encoded = tf.clip_by_value(encoded, clip_value_min=0, clip_value_max=2, name=None)
  42. # noise = self.randomiser(shape=(-1, 2), dtype=tf.float32)
  43. noise = np.random.normal(0, 1, (1, 2)) * 0.2
  44. noisy = tf.convert_to_tensor(noise, dtype=tf.float32)
  45. decoded = self.decoder(encoded + noisy)
  46. return decoded
  47. def view_encoder(encoder, N, samples=1000):
  48. test_values = misc.generate_random_bit_array(samples).reshape((-1, N))
  49. test_values_ho = misc.bit_matrix2one_hot(test_values)
  50. mvector = np.array([2**i for i in range(N)], dtype=int)
  51. symbols = (test_values * mvector).sum(axis=1)
  52. encoded = encoder(test_values_ho).numpy()
  53. # encoded = misc.polar2rect(encoded)
  54. for i in range(2**N):
  55. xy = encoded[symbols == i]
  56. plt.plot(xy[:, 0], xy[:, 1], 'x', markersize=12, label=format(i, f'0{N}b'))
  57. plt.annotate(xy=[xy[:, 0].mean()+0.01, xy[:, 1].mean()+0.01], text=format(i, f'0{N}b'))
  58. plt.xlabel('Real')
  59. plt.ylabel('Imaginary')
  60. plt.title("Autoencoder generated alphabet")
  61. # plt.legend()
  62. plt.show()
  63. pass
  64. if __name__ == '__main__':
  65. # (x_train, _), (x_test, _) = fashion_mnist.load_data()
  66. #
  67. # x_train = x_train.astype('float32') / 255.
  68. # x_test = x_test.astype('float32') / 255.
  69. #
  70. # print(f"Train data: {x_train.shape}")
  71. # print(f"Test data: {x_test.shape}")
  72. n = 4
  73. samples = 3e6
  74. x_train = misc.generate_random_bit_array(samples).reshape((-1, n))
  75. x_train_ho = misc.bit_matrix2one_hot(x_train)
  76. x_test_array = misc.generate_random_bit_array(samples * 0.3)
  77. x_test = x_test_array.reshape((-1, n))
  78. x_test_ho = misc.bit_matrix2one_hot(x_test)
  79. autoencoder = Autoencoder(n)
  80. autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
  81. autoencoder.fit(x_train_ho, x_train_ho,
  82. epochs=1,
  83. shuffle=False,
  84. validation_data=(x_test_ho, x_test_ho))
  85. encoded_data = autoencoder.encoder(x_test_ho)
  86. decoded_data = autoencoder.decoder(encoded_data).numpy()
  87. result = misc.int2bit_array(decoded_data.argmax(axis=1), n)
  88. print("Accuracy: %.4f" % accuracy_score(x_test_array, result.reshape(-1,)))
  89. view_encoder(autoencoder.encoder, n)
  90. pass