| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- import matplotlib.pyplot as plt
- import numpy as np
- import tensorflow as tf
- from sklearn.metrics import accuracy_score
- from tensorflow.keras import layers, losses
- from tensorflow.keras.models import Model
- import misc
- latent_dim = 64
- # print("# GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
- class Autoencoder(Model):
- def __init__(self, nary):
- super(Autoencoder, self).__init__()
- self.latent_dim = latent_dim
- self.encoder = tf.keras.Sequential()
- self.encoder.add(tf.keras.Input(shape=(4,)))
- self.encoder.add(layers.Dense(units=8, activation='relu'))
- # self.encoder.add(layers.Dropout(0.2))
- # self.encoder.add(layers.ReLU(max_value=1.0))
- self.decoder = tf.keras.Sequential()
- self.decoder.add(tf.keras.Input(shape=(2,)))
- self.decoder.add(layers.Dense(units=8))
- # self.encoder.add(tf.keras.layers.Dropout(0.2))
- self.decoder.add(layers.Dense(units=4, activation='softmax'))
- # self.decoder.add(layers.Softmax(units=4, dtype=bool))
- # [
- # layers.Input(shape=(28, 28, 1)),
- # layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=2),
- # layers.Conv2D(8, (3, 3), activation='relu', padding='same', strides=2)
- # ])
- # self.decoder = tf.keras.Sequential([
- # layers.Conv2DTranspose(8, kernel_size=3, strides=2, activation='relu', padding='same'),
- # layers.Conv2DTranspose(16, kernel_size=3, strides=2, activation='relu', padding='same'),
- # layers.Conv2D(1, kernel_size=(3, 3), activation='sigmoid', padding='same')
- # ])
- def call(self, x, **kwargs):
- encoded = self.encoder(x)
- decoded = self.decoder(encoded)
- return decoded
- if __name__ == '__main__':
- # (x_train, _), (x_test, _) = fashion_mnist.load_data()
- #
- # x_train = x_train.astype('float32') / 255.
- # x_test = x_test.astype('float32') / 255.
- #
- # print(f"Train data: {x_train.shape}")
- # print(f"Test data: {x_test.shape}")
- x_train = misc.generate_random_bit_array(1e5).reshape((-1, 4))
- x_test = misc.generate_random_bit_array(1e4).reshape((-1, 4))
- autoencoder = Autoencoder(latent_dim)
- autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
- autoencoder.fit(x_train, x_train,
- epochs=1,
- shuffle=True,
- validation_data=(x_test, x_test))
- encoded_data = autoencoder.encoder(x_test)
- decoded_data = autoencoder.decoder(encoded_data)
- print(accuracy_score(x_test, encoded_data))
- pass
|