autoencoder.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3. import tensorflow as tf
  4. from sklearn.metrics import accuracy_score
  5. from tensorflow.keras import layers, losses
  6. from tensorflow.keras.models import Model
  7. import misc
  8. import defs
  9. latent_dim = 64
  10. print("# GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
  11. class AutoencoderMod(defs.Modulator):
  12. def __init__(self, autoencoder):
  13. super().__init__(2**autoencoder.N)
  14. self.autoencoder = autoencoder
  15. def forward(self, binary: np.ndarray) -> np.ndarray:
  16. reshaped = binary.reshape((-1, self.N))
  17. reshaped_ho = misc.bit_matrix2one_hot(reshaped)
  18. encoded = self.autoencoder.encoder(reshaped_ho)
  19. x = encoded.numpy()
  20. x2 = x * 2 - 1
  21. f = np.zeros(x2.shape[0])
  22. x3 = misc.rect2polar(np.c_[x2[:, 0], x2[:, 1], f])
  23. return x3
  24. class AutoencoderDemod(defs.Demodulator):
  25. def __init__(self, autoencoder):
  26. super().__init__(2**autoencoder.N)
  27. self.autoencoder = autoencoder
  28. def forward(self, values: np.ndarray) -> np.ndarray:
  29. rect = misc.polar2rect(values[:, [0, 1]])
  30. decoded = self.autoencoder.decoder(rect).numpy()
  31. result = misc.int2bit_array(decoded.argmax(axis=1), self.N)
  32. return result.reshape(-1, )
  33. class Autoencoder(Model):
  34. def __init__(self, N, noise):
  35. super(Autoencoder, self).__init__()
  36. self.N = N
  37. self.encoder = tf.keras.Sequential()
  38. self.encoder.add(tf.keras.Input(shape=(2 ** N,), dtype=bool))
  39. self.encoder.add(layers.Dense(units=2 ** (N + 1)))
  40. # self.encoder.add(layers.Dropout(0.2))
  41. self.encoder.add(layers.Dense(units=2 ** (N + 1)))
  42. self.encoder.add(layers.Dense(units=2, activation="sigmoid"))
  43. # self.encoder.add(layers.ReLU(max_value=1.0))
  44. self.decoder = tf.keras.Sequential()
  45. self.decoder.add(tf.keras.Input(shape=(2,)))
  46. self.decoder.add(layers.Dense(units=2 ** (N + 1)))
  47. # self.decoder.add(layers.Dropout(0.2))
  48. self.decoder.add(layers.Dense(units=2 ** (N + 1)))
  49. self.decoder.add(layers.Dense(units=2 ** N, activation="softmax"))
  50. # self.randomiser = tf.random_normal_initializer(mean=0.0, stddev=0.1, seed=None)
  51. self.mod = None
  52. self.demod = None
  53. self.compiled = False
  54. # Divide by 2 because encoder outputs values between 0 and 1 instead of -1 and 1
  55. self.noise = 10 ** (noise / 10) # / 2
  56. # self.decoder.add(layers.Softmax(units=4, dtype=bool))
  57. # [
  58. # layers.Input(shape=(28, 28, 1)),
  59. # layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=2),
  60. # layers.Conv2D(8, (3, 3), activation='relu', padding='same', strides=2)
  61. # ])
  62. # self.decoder = tf.keras.Sequential([
  63. # layers.Conv2DTranspose(8, kernel_size=3, strides=2, activation='relu', padding='same'),
  64. # layers.Conv2DTranspose(16, kernel_size=3, strides=2, activation='relu', padding='same'),
  65. # layers.Conv2D(1, kernel_size=(3, 3), activation='sigmoid', padding='same')
  66. # ])
  67. def call(self, x, **kwargs):
  68. encoded = self.encoder(x)
  69. encoded = encoded * 2 - 1
  70. # encoded = tf.clip_by_value(encoded, clip_value_min=0, clip_value_max=1, name=None)
  71. # noise = self.randomiser(shape=(-1, 2), dtype=tf.float32)
  72. noise = np.random.normal(0, 1, (1, 2)) * self.noise
  73. noisy = tf.convert_to_tensor(noise, dtype=tf.float32)
  74. decoded = self.decoder(encoded + noisy)
  75. return decoded
  76. def train(self, samples=1e6):
  77. if samples % self.N:
  78. samples += self.N - (samples % self.N)
  79. x_train = misc.generate_random_bit_array(samples).reshape((-1, self.N))
  80. x_train_ho = misc.bit_matrix2one_hot(x_train)
  81. x_test_array = misc.generate_random_bit_array(samples * 0.3)
  82. x_test = x_test_array.reshape((-1, self.N))
  83. x_test_ho = misc.bit_matrix2one_hot(x_test)
  84. if not self.compiled:
  85. self.compile(optimizer='adam', loss=losses.MeanSquaredError())
  86. self.compiled = True
  87. self.fit(x_train_ho, x_train_ho, shuffle=False, validation_data=(x_test_ho, x_test_ho))
  88. # encoded_data = self.encoder(x_test_ho)
  89. # decoded_data = self.decoder(encoded_data).numpy()
  90. def get_modulator(self):
  91. if self.mod is None:
  92. self.mod = AutoencoderMod(self)
  93. return self.mod
  94. def get_demodulator(self):
  95. if self.demod is None:
  96. self.demod = AutoencoderDemod(self)
  97. return self.demod
  98. def view_encoder(encoder, N, samples=1000):
  99. test_values = misc.generate_random_bit_array(samples).reshape((-1, N))
  100. test_values_ho = misc.bit_matrix2one_hot(test_values)
  101. mvector = np.array([2 ** i for i in range(N)], dtype=int)
  102. symbols = (test_values * mvector).sum(axis=1)
  103. encoded = encoder(test_values_ho).numpy()
  104. # encoded = misc.polar2rect(encoded)
  105. for i in range(2 ** N):
  106. xy = encoded[symbols == i]
  107. plt.plot(xy[:, 0], xy[:, 1], 'x', markersize=12, label=format(i, f'0{N}b'))
  108. plt.annotate(xy=[xy[:, 0].mean() + 0.01, xy[:, 1].mean() + 0.01], text=format(i, f'0{N}b'))
  109. plt.xlabel('Real')
  110. plt.ylabel('Imaginary')
  111. plt.title("Autoencoder generated alphabet")
  112. # plt.legend()
  113. plt.show()
  114. pass
  115. if __name__ == '__main__':
  116. # (x_train, _), (x_test, _) = fashion_mnist.load_data()
  117. #
  118. # x_train = x_train.astype('float32') / 255.
  119. # x_test = x_test.astype('float32') / 255.
  120. #
  121. # print(f"Train data: {x_train.shape}")
  122. # print(f"Test data: {x_test.shape}")
  123. n = 4
  124. samples = 1e6
  125. x_train = misc.generate_random_bit_array(samples).reshape((-1, n))
  126. x_train_ho = misc.bit_matrix2one_hot(x_train)
  127. x_test_array = misc.generate_random_bit_array(samples * 0.3)
  128. x_test = x_test_array.reshape((-1, n))
  129. x_test_ho = misc.bit_matrix2one_hot(x_test)
  130. autoencoder = Autoencoder(n, -8)
  131. autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
  132. autoencoder.fit(x_train_ho, x_train_ho,
  133. epochs=1,
  134. shuffle=False,
  135. validation_data=(x_test_ho, x_test_ho))
  136. encoded_data = autoencoder.encoder(x_test_ho)
  137. decoded_data = autoencoder.decoder(encoded_data).numpy()
  138. result = misc.int2bit_array(decoded_data.argmax(axis=1), n)
  139. print("Accuracy: %.4f" % accuracy_score(x_test_array, result.reshape(-1, )))
  140. view_encoder(autoencoder.encoder, n)
  141. pass