import defs import numpy as np import math import misc from scipy.spatial import cKDTree def _make_gray(n): if n <= 0: return [] arr = ['0', '1'] i = 2 while True: if i >= 1 << n: break for j in range(i - 1, -1, -1): arr.append(arr[j]) for j in range(i): arr[j] = "0" + arr[j] for j in range(i, 2 * i): arr[j] = "1" + arr[j] i = i << 1 return list(map(lambda x: int(x, 2), arr)) def _gen_mary_alphabet(size, gray=True, polar=True): alphabet = np.zeros((size, 2)) N = math.ceil(math.sqrt(size)) # if sqrt(size) != size^2 (not a perfect square), # skip defines how many corners to cut off. skip = 0 if N ** 2 > size: skip = int(math.sqrt((N ** 2 - size) // 4)) step = 2 / (N - 1) skipped = 0 for x in range(N): for y in range(N): i = x * N + y - skipped if i >= size: break # Reverse y every odd column if x % 2 == 0 and N < 4: y = N - y - 1 if skip > 0: if (x < skip or x + 1 > N - skip) and \ (y < skip or y + 1 > N - skip): skipped += 1 continue # Exception for 3-ary alphabet, skip centre point if size == 8 and x == 1 and y == 1: skipped += 1 continue alphabet[i, :] = [step * x - 1, step * y - 1] if gray: shape = alphabet.shape d1 = 4 if N > 4 else 2 ** N // 4 g1 = np.array([0, 1, 3, 2]) g2 = g1[:d1] hypershape = (d1, 4, 2) if N > 4: hypercube = alphabet.reshape(hypershape + (N-4, )) hypercube = hypercube[:, g1, :, :][g2, :, :, :] else: hypercube = alphabet.reshape(hypershape) hypercube = hypercube[:, g1, :][g2, :, :] alphabet = hypercube.reshape(shape) if polar: alphabet = misc.rect2polar(alphabet) return alphabet class BypassChannel(defs.Channel): def forward(self, values): return values class AWGNChannel(defs.Channel): def __init__(self, noise_level, **kwargs): """ :param noise_level: in dB """ super().__init__(**kwargs) self.noise = 10 ** (noise_level / 10) def forward(self, values): a = np.random.normal(0, 1, values.shape[0]) * self.noise p = np.random.normal(0, 1, values.shape[0]) * self.noise f = np.zeros(values.shape[0]) noise_mat = np.c_[a, p, f] return values + noise_mat class BPSKMod(defs.Modulator): def __init__(self, carrier_f, **kwargs): super().__init__(2, **kwargs) self.f = carrier_f def forward(self, binary: np.ndarray): a = np.ones(binary.shape[0]) p = np.zeros(binary.shape[0]) p[binary == True] = np.pi f = np.zeros(binary.shape[0]) + self.f return np.c_[a, p, f] class BPSKDemod(defs.Demodulator): def __init__(self, carrier_f, bandwidth, **kwargs): """ :param carrier_f: Carrier frequency :param bandwidth: demodulator bandwidth """ super().__init__(2, **kwargs) self.upper_f = carrier_f + bandwidth / 2 self.lower_f = carrier_f - bandwidth / 2 def forward(self, values): # TODO: Channel noise simulator for frequency component? # for now we only care about amplitude and phase ap = np.delete(values, 2, 1) ap = misc.polar2rect(ap) result = np.ones(values.shape[0], dtype=bool) result[ap[:, 0] > 0] = False return result class MaryMod(defs.Modulator): def __init__(self, N, carrier_f, gray=True): if N < 2: raise ValueError("M-ary modulator N value has to be larger than 1") super().__init__(2 ** N) self.f = carrier_f self.alphabet = _gen_mary_alphabet(self.alphabet_size, gray) self.mult_mat = np.array([2 ** i for i in range(self.N)]) def forward(self, binary): if binary.shape[0] % self.N > 0: to_add = self.N - binary.shape[0] % self.N binary = np.concatenate((binary, np.zeros(to_add, bool))) reshaped = binary.reshape((binary.shape[0] // self.N, self.N)) indices = np.matmul(reshaped, self.mult_mat) values = self.alphabet[indices, :] a = values[:, 0] p = values[:, 1] f = np.zeros(reshaped.shape[0]) + self.f return np.c_[a, p, f] #, indices class MaryDemod(defs.Demodulator): def __init__(self, N, carrier_f, gray=True): if N < 2: raise ValueError("M-ary modulator N value has to be larger than 1") super().__init__(2 ** N) self.f = carrier_f self.N = N self.alphabet = _gen_mary_alphabet(self.alphabet_size, gray=gray, polar=False) self.ktree = cKDTree(self.alphabet) def forward(self, binary): binary = binary[:, :2] # ignore frequency rbin = misc.polar2rect(binary) indices = self.ktree.query(rbin)[1] # Converting indices to bite array # FIXME: unpackbits requires 8bit inputs, thus largest demodulation is 256-QAM values = np.unpackbits(np.array([indices], dtype=np.uint8).T, bitorder='little', axis=1) return values[:, :self.N].reshape((-1,)).astype(bool) #, indices