import matplotlib.pyplot as plt import graphs from models.basic import AWGNChannel, BPSKDemod, BPSKMod, BypassChannel, AlphabetMod, AlphabetDemod if __name__ == '__main__': # show_constellation(BPSKMod(10e6), AWGNChannel(-1), BPSKDemod(10e6, 10e3)) # get_ber(BPSKMod(10e6), AWGNChannel(-20), BPSKDemod(10e6, 10e3)) # mod = MaryMod('8psk', 10e6) # misc.display_alphabet(mod.alphabet, a_vals=True) # mod = MaryMod('qpsk', 10e6) # misc.display_alphabet(mod.alphabet, a_vals=True) # mod = MaryMod('16qam', 10e6) # misc.display_alphabet(mod.alphabet, a_vals=True) # mod = MaryMod('64qam', 10e6) # misc.display_alphabet(mod.alphabet, a_vals=True) # aenc = Autoencoder(4, -25) # aenc.train(samples=5e5) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 4bit -25dB') # aenc = Autoencoder(5, -25) # aenc.train(samples=2e5) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 5bit -25dB') # view_encoder(aenc.encoder, 5) # plt.plot(*get_AWGN_ber(AlphabetMod('32qam', 10e6), AlphabetDemod('32qam', 10e6), samples=12000, start=-15), '-', # label='32-QAM') # show_constellation(AlphabetMod('32qam', 10e6), AWGNChannel(-1), AlphabetDemod('32qam', 10e6)) # mod = AlphabetMod('32qam', 10e6) # misc.display_alphabet(mod.alphabet, a_vals=True) # pass # aenc = Autoencoder(5, -15) # aenc.train(samples=2e6) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 5bit -15dB') # # aenc = Autoencoder(4, -25) # aenc.train(samples=6e5) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 4bit -20dB') # # aenc = Autoencoder(4, -15) # aenc.train(samples=6e5) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 4bit -15dB') # aenc = Autoencoder(2, -20) # aenc.train(samples=6e5) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 2bit -20dB') # # aenc = Autoencoder(2, -15) # aenc.train(samples=6e5) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 2bit -15dB') # aenc = Autoencoder(4, -10) # aenc.train(samples=5e5) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 4bit -10dB') # # aenc = Autoencoder(4, -8) # aenc.train(samples=5e5) # plt.plot(*get_AWGN_ber(aenc.get_modulator(), aenc.get_demodulator(), samples=12000, start=-15), '-', # label='AE 4bit -8dB') # for scheme in ['64qam', '32qam', '16qam', 'qpsk', '8psk']: # plt.plot(*get_SNR( # AlphabetMod(scheme, 10e6), # AlphabetDemod(scheme, 10e6), # samples=100e3, # steps=40, # start=-15 # ), '-', label=scheme.upper()) # plt.yscale('log') # plt.grid() # plt.xlabel('SNR dB') # plt.ylabel('BER') # plt.legend() # plt.show() # for l in np.logspace(start=0, stop=3, num=6): # plt.plot(*misc.get_SNR( # AlphabetMod('4pam', 10e6), # AlphabetDemod('4pam', 10e6), # samples=2000, # steps=200, # start=-5, # stop=20, # length=l, # pulse_shape='rcos' # ), '-', label=(str(int(l))+'km')) # # plt.yscale('log') # # plt.gca().invert_xaxis() # plt.grid() # plt.xlabel('SNR dB') # # plt.ylabel('BER') # plt.title("BER against Fiber length") # plt.legend() # plt.show() for ps in ['rect', 'rcos', 'rrcos']: plt.plot(*graphs.get_SNR( AlphabetMod('4pam', 10e6), AlphabetDemod('4pam', 10e6), samples=30000, steps=100, start=-5, stop=20, length=1, pulse_shape=ps ), '-', label=ps) plt.yscale('log') plt.grid() plt.xlabel('SNR dB') plt.ylabel('BER') plt.title("BER for different pulse shapes") plt.legend() plt.show() pass