from sklearn.preprocessing import OneHotEncoder import numpy as np from tensorflow.keras import layers from end_to_end import load_model from models.custom_layers import DigitizationLayer, OpticalChannel from matplotlib import pyplot as plt import math # plot frequency spectrum of e2e model def plot_e2e_spectrum(model_name=None): # Load pre-trained model ae_model, params = load_model(model_name=model_name) # Generate a list of random symbols (one hot encoded) cat = [np.arange(params["cardinality"])] enc = OneHotEncoder(handle_unknown='ignore', sparse=False, categories=cat) rand_int = np.random.randint(params["cardinality"], size=(10000, 1)) out = enc.fit_transform(rand_int) # Encode the list of symbols using the trained encoder enc = ae_model.encode_stream(out).flatten() # Pass the output of the encoder through LPF lpf = DigitizationLayer(fs=params["fs"], num_of_samples=320000, sig_avg=0)(enc).numpy() # Plot the frequency spectrum of the signal freq = np.fft.fftfreq(lpf.shape[-1], d=1 / params["fs"]) mul = np.exp(0.5j * params["dispersion_factor"] * params["fiber_length"] * np.power(2 * math.pi * freq, 2)) a = np.fft.ifft(mul) a2 = np.abs(np.power(a, 2)) b = np.fft.fft(a2) plt.plot(freq, np.abs(np.fft.fft(lpf)), 'x') plt.title("Spectrum of Modulating Potential at Encoder") plt.ylim((0, 500)) plt.xlim((-5e10, 5e10)) plt.xlabel("Freuquency / Hz") plt.ylabel("Magnitude / au") # plt.savefig('nn_encoder_spectrum.eps', format='eps') # plt.savefig('nn_encoder_spectrum.png', format='png') plt.show() def plot_e2e_encoded_output(model_name=None): # Load pre-trained model ae_model, params = load_model(model_name=model_name) # Generate a random block of messages val, inp, _ = ae_model.generate_random_inputs(num_of_blocks=1, return_vals=True) # Encode and flatten the messages enc = ae_model.encoder(inp) flat_enc = layers.Flatten()(enc) chan_out = ae_model.channel.layers[1](flat_enc) # Instantiate LPF layer lpf = DigitizationLayer(fs=params["fs"], num_of_samples=params["messages_per_block"] * params["samples_per_symbol"], sig_avg=0) # Apply LPF lpf_out = lpf(flat_enc) # Time axis t = np.arange(params["messages_per_block"] * params["samples_per_symbol"]) if isinstance(ae_model.channel.layers[1], OpticalChannel): t = t / params["fs"] # Plot the concatenated symbols before and after LPF plt.figure(figsize=(2 * params["messages_per_block"], 6)) for i in range(1, params["messages_per_block"]): plt.axvline(x=t[i * params["samples_per_symbol"]], color='black') plt.plot(t, flat_enc.numpy().T, 'x', label='output of encNN') plt.plot(t, lpf_out.numpy().T, label='Modulating potential') plt.plot(t, chan_out.numpy().flatten(), label='DD received signal') plt.title(str(val[0, :, 0])) plt.legend(loc='upper right') plt.xlabel("Time / s") plt.ylabel("Amplitude / V") plt.show() if __name__ == '__main__': plot_e2e_spectrum() # plot_e2e_encoded_output()