import math import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score from sklearn.preprocessing import OneHotEncoder from tensorflow.keras import layers, losses from tensorflow.keras import backend as K from models.custom_layers import ExtractCentralMessage, OpticalChannel, DigitizationLayer, BitsToSymbols, SymbolsToBits import itertools class EndToEndAutoencoder(tf.keras.Model): def __init__(self, cardinality, samples_per_symbol, messages_per_block, channel, bit_mapping=False): """ The autoencoder that aims to find a encoding of the input messages. It should be noted that a "block" consists of multiple "messages" to introduce memory into the simulation as this is essential for modelling inter-symbol interference. The autoencoder architecture was heavily influenced by IEEE 8433895. :param cardinality: Number of different messages. Chosen such that each message encodes log_2(cardinality) bits :param samples_per_symbol: Number of samples per transmitted symbol :param messages_per_block: Total number of messages in transmission block :param channel: Channel Layer object. Must be a subclass of keras.layers.Layer with an implemented forward pass """ super(EndToEndAutoencoder, self).__init__() # Labelled M in paper self.cardinality = cardinality self.bits_per_symbol = int(math.log(self.cardinality, 2)) # Labelled n in paper self.samples_per_symbol = samples_per_symbol # Labelled N in paper if messages_per_block % 2 == 0: messages_per_block += 1 self.messages_per_block = messages_per_block # Channel Model Layer if isinstance(channel, layers.Layer): self.channel = tf.keras.Sequential([ layers.Flatten(), channel, ExtractCentralMessage(self.messages_per_block, self.samples_per_symbol) ], name="channel_model") else: raise TypeError("Channel must be a subclass of keras.layers.layer!") # Boolean identifying if bit mapping is to be learnt self.bit_mapping = bit_mapping # other parameters/metrics self.symbol_error_rate = None self.bit_error_rate = None self.snr = 20 * math.log(0.5 / channel.rx_stddev, 10) # Model Hyper-parameters leaky_relu_alpha = 0 relu_clip_val = 1.0 # Layer configuration for the case when bit mapping is to be learnt if self.bit_mapping: encoding_layers = [ layers.Input(shape=(self.messages_per_block, self.bits_per_symbol)), BitsToSymbols(self.cardinality), layers.TimeDistributed(layers.Dense(2 * self.cardinality)), layers.TimeDistributed(layers.LeakyReLU(alpha=leaky_relu_alpha)), # layers.TimeDistributed(layers.Dense(2 * self.cardinality)), # layers.TimeDistributed(layers.LeakyReLU(alpha=leaky_relu_alpha)), # layers.TimeDistributed(layers.Dense(self.samples_per_symbol, activation='sigmoid')), layers.TimeDistributed(layers.Dense(self.samples_per_symbol)), layers.TimeDistributed(layers.ReLU(max_value=relu_clip_val)) ] decoding_layers = [ layers.Dense(2 * self.cardinality), layers.LeakyReLU(alpha=leaky_relu_alpha), # layers.Dense(2 * self.cardinality), # layers.LeakyReLU(alpha=0.01), layers.Dense(self.bits_per_symbol, activation='sigmoid') ] # layer configuration for the case when only symbol mapping is to be learnt else: encoding_layers = [ layers.Input(shape=(self.messages_per_block, self.cardinality)), layers.TimeDistributed(layers.Dense(2 * self.cardinality)), layers.TimeDistributed(layers.LeakyReLU(alpha=leaky_relu_alpha)), layers.TimeDistributed(layers.Dense(2 * self.cardinality)), layers.TimeDistributed(layers.LeakyReLU(alpha=leaky_relu_alpha)), layers.TimeDistributed(layers.Dense(self.samples_per_symbol, activation='sigmoid')), # layers.TimeDistributed(layers.Dense(self.samples_per_symbol)), # layers.TimeDistributed(layers.ReLU(max_value=relu_clip_val)) ] decoding_layers = [ layers.Dense(2 * self.cardinality), layers.LeakyReLU(alpha=leaky_relu_alpha), layers.Dense(2 * self.cardinality), layers.LeakyReLU(alpha=leaky_relu_alpha), layers.Dense(self.cardinality, activation='softmax') ] # Encoding Neural Network self.encoder = tf.keras.Sequential([ *encoding_layers ], name="encoding_model") # Decoding Neural Network self.decoder = tf.keras.Sequential([ *decoding_layers ], name="decoding_model") def cost(self, y_true, y_pred): symbol_cost = losses.CategoricalCrossentropy()(y_true, y_pred) y_bits_true = SymbolsToBits(self.cardinality)(y_true) y_bits_pred = SymbolsToBits(self.cardinality)(y_pred) bit_cost = losses.BinaryCrossentropy()(y_bits_true, y_bits_pred) a = 1 return symbol_cost + a * bit_cost def generate_random_inputs(self, num_of_blocks, return_vals=False): """ A method that generates a list of one-hot encoded messages. This is utilized for generating the test/train data. :param num_of_blocks: Number of blocks to generate. A block contains multiple messages to be transmitted in consecutively to model ISI. The central message in a block is returned as the label for training. :param return_vals: If true, the raw decimal values of the input sequence will be returned """ cat = [np.arange(self.cardinality)] enc = OneHotEncoder(handle_unknown='ignore', sparse=False, categories=cat) mid_idx = int((self.messages_per_block - 1) / 2) if self.bit_mapping: rand_int = np.random.randint(2, size=(num_of_blocks * self.messages_per_block * self.bits_per_symbol, 1)) out = rand_int out_arr = np.reshape(out, (num_of_blocks, self.messages_per_block, self.bits_per_symbol)) if return_vals: return out_arr, out_arr, out_arr[:, mid_idx, :] else: rand_int = np.random.randint(self.cardinality, size=(num_of_blocks * self.messages_per_block, 1)) out = enc.fit_transform(rand_int) out_arr = np.reshape(out, (num_of_blocks, self.messages_per_block, self.cardinality)) if return_vals: out_val = np.reshape(rand_int, (num_of_blocks, self.messages_per_block, 1)) return out_val, out_arr, out_arr[:, mid_idx, :] return out_arr, out_arr[:, mid_idx, :] def train(self, num_of_blocks=1e6, epochs=1, batch_size=None, train_size=0.8, lr=1e-3): """ Method to train the autoencoder. Further configuration to the loss function, optimizer etc. can be made in here. :param num_of_blocks: Number of blocks to generate for training. Analogous to the dataset size. :param batch_size: Number of samples to consider on each update iteration of the optimization algorithm :param train_size: Float less than 1 representing the proportion of the dataset to use for training :param lr: The learning rate of the optimizer. Defines how quickly the algorithm converges """ X_train, y_train = self.generate_random_inputs(int(num_of_blocks * train_size)) X_test, y_test = self.generate_random_inputs(int(num_of_blocks * (1 - train_size))) opt = tf.keras.optimizers.Adam(learning_rate=lr) # TODO: Investigate different optimizers (with different learning rates and other parameters) # SGD # RMSprop # Adam # Adadelta # Adagrad # Adamax # Nadam # Ftrl if self.bit_mapping: loss_fn = losses.BinaryCrossentropy() else: # loss_fn = losses.CategoricalCrossentropy() loss_fn = self.cost self.compile(optimizer=opt, loss=loss_fn, metrics=['accuracy'], loss_weights=None, weighted_metrics=None, run_eagerly=False ) history = self.fit(x=X_train, y=y_train, batch_size=batch_size, epochs=epochs, shuffle=True, validation_data=(X_test, y_test) ) def test(self, num_of_blocks=1e4, length_plot=False, plt_show=True): X_test, y_test = self.generate_random_inputs(int(num_of_blocks)) y_out = self.call(X_test) y_pred = tf.argmax(y_out, axis=1) y_true = tf.argmax(y_test, axis=1) self.symbol_error_rate = 1 - accuracy_score(y_true, y_pred) bits_pred = SymbolsToBits(self.cardinality)(tf.one_hot(y_pred, self.cardinality)).numpy().flatten() bits_true = SymbolsToBits(self.cardinality)(y_test).numpy().flatten() self.bit_error_rate = 1 - accuracy_score(bits_true, bits_pred) if (length_plot): lengths = np.linspace(0, 70, 50) ber_l = [] for l in lengths: tx_channel = OpticalChannel(fs=self.channel.layers[1].fs, num_of_samples=self.channel.layers[1].num_of_samples, dispersion_factor=self.channel.layers[1].dispersion_factor, fiber_length=l, lpf_cutoff=self.channel.layers[1].lpf_cutoff, rx_stddev=self.channel.layers[1].rx_stddev, sig_avg=self.channel.layers[1].sig_avg, enob=self.channel.layers[1].enob) test_channel = tf.keras.Sequential([ layers.Flatten(), tx_channel, ExtractCentralMessage(self.messages_per_block, self.samples_per_symbol) ], name="test channel (variable length)") X_test_l, y_test_l = self.generate_random_inputs(int(num_of_blocks)) y_out_l = self.decoder(test_channel(self.encoder(X_test_l))) y_pred_l = tf.argmax(y_out_l, axis=1) # y_true_l = tf.argmax(y_test_l, axis=1) bits_pred_l = SymbolsToBits(self.cardinality)(tf.one_hot(y_pred_l, self.cardinality)).numpy().flatten() bits_true_l = SymbolsToBits(self.cardinality)(y_test_l).numpy().flatten() bit_error_rate_l = 1 - accuracy_score(bits_true_l, bits_pred_l) ber_l.append(bit_error_rate_l) plt.plot(lengths, ber_l) plt.yscale('log') if plt_show: plt.show() print("SYMBOL ERROR RATE: {}".format(self.symbol_error_rate)) print("BIT ERROR RATE: {}".format(self.bit_error_rate)) pass def view_encoder(self): ''' A method that views the learnt encoder for each distint message. This is displayed as a plot with a subplot for each message/symbol. ''' mid_idx = int((self.messages_per_block - 1) / 2) if self.bit_mapping: messages = np.zeros((self.cardinality, self.messages_per_block, self.bits_per_symbol)) lst = [list(i) for i in itertools.product([0, 1], repeat=self.bits_per_symbol)] idx = 0 for msg in messages: msg[mid_idx] = lst[idx] idx += 1 else: # Generate inputs for encoder messages = np.zeros((self.cardinality, self.messages_per_block, self.cardinality)) idx = 0 for msg in messages: msg[mid_idx, idx] = 1 idx += 1 # Pass input through encoder and select middle messages encoded = self.encoder(messages) enc_messages = encoded[:, mid_idx, :] # Compute subplot grid layout i = 0 while 2 ** i < self.cardinality ** 0.5: i += 1 num_x = int(2 ** i) num_y = int(self.cardinality / num_x) # Plot all symbols fig, axs = plt.subplots(num_y, num_x, figsize=(2.5 * num_x, 2 * num_y)) t = np.arange(self.samples_per_symbol) if isinstance(self.channel.layers[1], OpticalChannel): t = t / self.channel.layers[1].fs sym_idx = 0 for y in range(num_y): for x in range(num_x): axs[y, x].plot(t, enc_messages[sym_idx].numpy().flatten(), 'x') axs[y, x].set_title('Symbol {}'.format(str(sym_idx))) sym_idx += 1 for ax in axs.flat: ax.set(xlabel='Time', ylabel='Amplitude', ylim=(0, 1)) for ax in axs.flat: ax.label_outer() plt.show() pass def view_sample_block(self): ''' Generates a random string of input message and encodes them. In addition to this, the output is passed through digitization layer without any quantization noise for the low pass filtering. ''' # Generate a random block of messages val, inp, _ = self.generate_random_inputs(num_of_blocks=1, return_vals=True) # Encode and flatten the messages enc = self.encoder(inp) flat_enc = layers.Flatten()(enc) chan_out = self.channel.layers[1](flat_enc) # Instantiate LPF layer lpf = DigitizationLayer(fs=self.channel.layers[1].fs, num_of_samples=self.messages_per_block * self.samples_per_symbol, sig_avg=0) # Apply LPF lpf_out = lpf(flat_enc) # Time axis t = np.arange(self.messages_per_block * self.samples_per_symbol) if isinstance(self.channel.layers[1], OpticalChannel): t = t / self.channel.layers[1].fs # Plot the concatenated symbols before and after LPF plt.figure(figsize=(2 * self.messages_per_block, 6)) for i in range(1, self.messages_per_block): plt.axvline(x=t[i * self.samples_per_symbol], color='black') plt.plot(t, flat_enc.numpy().T, 'x') plt.plot(t, lpf_out.numpy().T) plt.plot(t, chan_out.numpy().flatten()) plt.ylim((0, 1)) plt.xlim((t.min(), t.max())) plt.title(str(val[0, :, 0])) plt.show() pass def call(self, inputs, training=None, mask=None): tx = self.encoder(inputs) rx = self.channel(tx) outputs = self.decoder(rx) return outputs SAMPLING_FREQUENCY = 336e9 CARDINALITY = 32 SAMPLES_PER_SYMBOL = 32 MESSAGES_PER_BLOCK = 9 DISPERSION_FACTOR = -21.7 * 1e-24 FIBER_LENGTH = 50 FIBER_LENGTH_STDDEV = 5 if __name__ == '__main__': stddevs = [0, 1, 5, 10] legend = [] for s in stddevs: optical_channel = OpticalChannel(fs=SAMPLING_FREQUENCY, num_of_samples=MESSAGES_PER_BLOCK * SAMPLES_PER_SYMBOL, dispersion_factor=DISPERSION_FACTOR, fiber_length=FIBER_LENGTH, fiber_length_stddev=s, lpf_cutoff=32e9, rx_stddev=0.01, sig_avg=0.5, enob=10) ae_model = EndToEndAutoencoder(cardinality=CARDINALITY, samples_per_symbol=SAMPLES_PER_SYMBOL, messages_per_block=MESSAGES_PER_BLOCK, channel=optical_channel, bit_mapping=False) print(ae_model.snr) ae_model.train(num_of_blocks=3e5, epochs=5) ae_model.test(length_plot=True, plt_show=False) # plt.legend(['{} +/- {}'.format(FIBER_LENGTH, s)]) legend.append('{} +/- {}'.format(FIBER_LENGTH, s)) plt.legend(legend) plt.show() plt.savefig('ber_vs_length.eps', format='eps') # ae_model.view_encoder() # ae_model.view_sample_block() # # ae_model.summary() # ae_model.encoder.summary() # ae_model.channel.summary() # ae_model.decoder.summary() pass