import matplotlib.pyplot as plt import defs import numpy as np import math from scipy.fft import fft, ifft class OpticalChannel(defs.Channel): def __init__(self, noise_level, dispersion, symbol_rate, sample_rate, length, show_graphs=False, **kwargs): """ :param noise_level: Noise level in dB :param dispersion: dispersion coefficient is ps^2/km :param symbol_rate: Symbol rate of modulated signal in Hz :param sample_rate: Sample rate of time-domain model (time steps in simulation) in Hz :param length: fibre length in km :param show_graphs: if graphs should be displayed or not Optical Channel class constructor """ super().__init__(**kwargs) self.noise = 10 ** (noise_level / 10) self.dispersion = dispersion # * 1e-24 # Converting from ps^2/km to s^2/km self.symbol_rate = symbol_rate self.symbol_period = 1 / self.symbol_rate self.sample_rate = sample_rate self.sample_period = 1 / self.sample_rate self.length = length self.show_graphs = show_graphs def __get_time_domain(self, symbol_vals): samples_per_symbol = int(self.sample_rate / self.symbol_rate) samples = int(symbol_vals.shape[0] * samples_per_symbol) symbol_vals_a = np.repeat(symbol_vals, repeats=samples_per_symbol, axis=0) t = np.linspace(start=0, stop=samples * self.sample_period, num=samples) val_t = symbol_vals_a[:, 0] * np.cos(2 * math.pi * symbol_vals_a[:, 2] * t + symbol_vals_a[:, 1]) return t, val_t def __time_to_frequency(self, values): val_f = fft(values) f = np.linspace(0.0, 1 / (2 * self.sample_period), (values.size // 2)) f_neg = -1 * np.flip(f) f = np.concatenate((f, f_neg), axis=0) return f, val_f def __frequency_to_time(self, values): val_t = ifft(values) t = np.linspace(start=0, stop=values.size * self.sample_period, num=values.size) return t, val_t def __apply_dispersion(self, values): # Obtain fft f, val_f = self.__time_to_frequency(values) if self.show_graphs: plt.plot(f, val_f) plt.title('frequency domain (pre-distortion)') plt.show() # Apply distortion dist_val_f = val_f * np.exp(0.5j * self.dispersion * self.length * np.power(2 * math.pi * f, 2)) if self.show_graphs: plt.plot(f, dist_val_f) plt.title('frequency domain (post-distortion)') plt.show() # Inverse fft t, val_t = self.__frequency_to_time(dist_val_f) return t, val_t def __photodiode_detection(self, values): t = np.linspace(start=0, stop=values.size * self.sample_period, num=values.size) val_t = np.power(np.absolute(values), 2) return t, val_t def forward(self, values): # Converting APF representation to time-series t, val_t = self.__get_time_domain(values) if self.show_graphs: plt.plot(t, val_t) plt.title('time domain (raw)') plt.show() # Adding AWGN val_t += np.random.normal(0, 1, val_t.shape) * self.noise if self.show_graphs: plt.plot(t, val_t) plt.title('time domain (AWGN)') plt.show() # Applying chromatic dispersion t, val_t = self.__apply_dispersion(val_t) if self.show_graphs: plt.plot(t, val_t) plt.title('time domain (post-distortion)') plt.show() # Photodiode Detection t, val_t = self.__photodiode_detection(val_t) if self.show_graphs: plt.plot(t, val_t) plt.title('time domain (post-detection)') plt.show() return t, val_t if __name__ == '__main__': # Simple OOK modulation num_of_symbols = 10 symbol_vals = np.zeros((num_of_symbols, 3)) symbol_vals[:, 0] = np.random.randint(2, size=symbol_vals.shape[0]) symbol_vals[:, 2] = 10e6 channel = OpticalChannel(noise_level=-20, dispersion=-21.7, symbol_rate=100e3, sample_rate=500e6, length=100, show_graphs=True) time, v = channel.forward(symbol_vals)