import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier class Model: def __init__(self): scaler = StandardScaler() def train(self, X_train, Y_train, X_test, Y_test, n_range=40): error_rate = [] # Might take some time for i in range(1, n_range): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, Y_train) pred_i = knn.predict(X_test) error_rate.append(np.mean(pred_i != Y_test))