import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import accuracy_score from models import basic from models.basic import AWGNChannel, BPSKDemod, BPSKMod, BypassChannel, MaryMod, MaryDemod import misc def show_constellation(mod, chan, demod, samples=1000): x = misc.generate_random_bit_array(samples) x_mod = mod.forward(x) x_chan = chan.forward(x_mod) x_demod = demod.forward(x_chan) x_mod_rect = misc.polar2rect(x_mod) x_chan_rect = misc.polar2rect(x_chan) plt.plot(x_chan_rect[:, 0][x], x_chan_rect[:, 1][x], '+') plt.plot(x_chan_rect[:, 0][~x], x_chan_rect[:, 1][~x], '+') plt.plot(x_mod_rect[:, 0], x_mod_rect[:, 1], 'ro') axes = plt.gca() axes.set_xlim([-2, +2]) axes.set_ylim([-2, +2]) plt.grid() plt.show() print('Accuracy : ' + str()) def get_ber(mod, chan, demod, samples=1000): x = misc.generate_random_bit_array(samples) x_mod = mod.forward(x) x_chan = chan.forward(x_mod) x_demod = demod.forward(x_chan) return 1 - accuracy_score(x, x_demod) def get_AWGN_ber(mod, demod, samples=1000, start=-8, stop=5, steps=30): ber_x = np.linspace(start, stop, steps) ber_y = [] for noise in ber_x: ber_y.append(get_ber(mod, AWGNChannel(noise), demod, samples=samples)) return ber_x, ber_y if __name__ == '__main__': plt.plot(*get_AWGN_ber(MaryMod(6, 10e6, gray=True), MaryDemod(6, 10e6), samples=12000, start=-15), '-', label='64-QAM') plt.plot(*get_AWGN_ber(MaryMod(5, 10e6, gray=True), MaryDemod(5, 10e6), samples=12000, start=-15), '-', label='32-QAM') plt.plot(*get_AWGN_ber(MaryMod(4, 10e6, gray=True), MaryDemod(4, 10e6), samples=12000, start=-15), '-', label='16-QAM') plt.plot(*get_AWGN_ber(BPSKMod(10e6), BPSKDemod(10e6, 10e3), samples=12000), '-', label='BPSK') plt.yscale('log') plt.gca().invert_xaxis() plt.grid() plt.xlabel('Noise dB') plt.ylabel('BER') plt.legend() plt.show() pass