|
|
@@ -0,0 +1,617 @@
|
|
|
+import json
|
|
|
+import math
|
|
|
+import os
|
|
|
+from datetime import datetime as dt
|
|
|
+import tensorflow as tf
|
|
|
+import numpy as np
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+from sklearn.metrics import accuracy_score
|
|
|
+from sklearn.preprocessing import OneHotEncoder
|
|
|
+from tensorflow.keras import layers, losses
|
|
|
+
|
|
|
+from models.data import BinaryTimeDistributedOneHotGenerator
|
|
|
+from models.layers import ExtractCentralMessage, OpticalChannel, DigitizationLayer, BitsToSymbols, SymbolsToBits
|
|
|
+import tensorflow_model_optimization as tfmot
|
|
|
+
|
|
|
+import graphs
|
|
|
+
|
|
|
+
|
|
|
+class EndToEndAutoencoder(tf.keras.Model):
|
|
|
+ def __init__(self,
|
|
|
+ cardinality,
|
|
|
+ samples_per_symbol,
|
|
|
+ messages_per_block,
|
|
|
+ channel,
|
|
|
+ custom_loss_fn=False,
|
|
|
+ quantize=False,
|
|
|
+ alpha=1):
|
|
|
+ """
|
|
|
+ The autoencoder that aims to find a encoding of the input messages. It should be noted that a "block" consists
|
|
|
+ of multiple "messages" to introduce memory into the simulation as this is essential for modelling inter-symbol
|
|
|
+ interference. The autoencoder architecture was heavily influenced by IEEE 8433895.
|
|
|
+
|
|
|
+ :param cardinality: Number of different messages. Chosen such that each message encodes log_2(cardinality) bits
|
|
|
+ :param samples_per_symbol: Number of samples per transmitted symbol
|
|
|
+ :param messages_per_block: Total number of messages in transmission block
|
|
|
+ :param channel: Channel Layer object. Must be a subclass of keras.layers.Layer with an implemented forward pass
|
|
|
+ :param alpha: Alpha value for in loss function
|
|
|
+ """
|
|
|
+ super(EndToEndAutoencoder, self).__init__()
|
|
|
+
|
|
|
+ # Labelled M in paper
|
|
|
+ self.cardinality = cardinality
|
|
|
+ self.bits_per_symbol = int(math.log(self.cardinality, 2))
|
|
|
+
|
|
|
+ # Labelled n in paper
|
|
|
+ self.samples_per_symbol = samples_per_symbol
|
|
|
+ self.alpha = alpha
|
|
|
+
|
|
|
+ # Labelled N in paper - conditional +=1 to ensure odd value
|
|
|
+ if messages_per_block % 2 == 0:
|
|
|
+ messages_per_block += 1
|
|
|
+ self.messages_per_block = messages_per_block
|
|
|
+
|
|
|
+ # Channel Model Layer
|
|
|
+ if isinstance(channel, layers.Layer):
|
|
|
+ self.channel = tf.keras.Sequential([
|
|
|
+ layers.Flatten(),
|
|
|
+ channel,
|
|
|
+ ExtractCentralMessage(self.messages_per_block, self.samples_per_symbol)
|
|
|
+ ], name="channel_model")
|
|
|
+ else:
|
|
|
+ raise TypeError("Channel must be a subclass of \"tensorflow.keras.layers.layer\"!")
|
|
|
+
|
|
|
+ # Boolean identifying if bit mapping is to be learnt
|
|
|
+ self.custom_loss_fn = custom_loss_fn
|
|
|
+
|
|
|
+ # other parameters/metrics
|
|
|
+ self.symbol_error_rate = None
|
|
|
+ self.bit_error_rate = None
|
|
|
+ self.snr = 20 * math.log(0.5 / channel.rx_stddev, 10)
|
|
|
+
|
|
|
+ # Model Hyper-parameters
|
|
|
+ leaky_relu_alpha = 0
|
|
|
+ relu_clip_val = 1.0
|
|
|
+
|
|
|
+ # Encoding Neural Network
|
|
|
+ self.encoder = tf.keras.Sequential([
|
|
|
+ layers.Input(shape=(self.messages_per_block, self.cardinality)),
|
|
|
+ layers.TimeDistributed(layers.Dense(2 * self.cardinality)),
|
|
|
+ layers.TimeDistributed(layers.LeakyReLU(alpha=leaky_relu_alpha)),
|
|
|
+ layers.TimeDistributed(layers.Dense(2 * self.cardinality)),
|
|
|
+ layers.TimeDistributed(layers.LeakyReLU(alpha=leaky_relu_alpha)),
|
|
|
+ layers.TimeDistributed(layers.Dense(self.samples_per_symbol, activation='sigmoid')),
|
|
|
+ # layers.TimeDistributed(layers.Dense(self.samples_per_symbol)),
|
|
|
+ # layers.TimeDistributed(layers.ReLU(max_value=relu_clip_val))
|
|
|
+ ], name="encoding_model")
|
|
|
+
|
|
|
+ # Decoding Neural Network
|
|
|
+ self.decoder = tf.keras.Sequential([
|
|
|
+ layers.Dense(2 * self.cardinality),
|
|
|
+ layers.ReLU(),
|
|
|
+ layers.Dense(2 * self.cardinality),
|
|
|
+ layers.ReLU(),
|
|
|
+ layers.Dense(self.cardinality, activation='softmax')
|
|
|
+ ], name="decoding_model")
|
|
|
+ self.decoder.build((1, self.samples_per_symbol))
|
|
|
+
|
|
|
+ def save_end_to_end(self, name):
|
|
|
+ # extract all params and save
|
|
|
+
|
|
|
+ params = {"fs": self.channel.layers[1].fs,
|
|
|
+ "cardinality": self.cardinality,
|
|
|
+ "samples_per_symbol": self.samples_per_symbol,
|
|
|
+ "messages_per_block": self.messages_per_block,
|
|
|
+ "dispersion_factor": self.channel.layers[1].dispersion_factor,
|
|
|
+ "fiber_length": float(self.channel.layers[1].fiber_length),
|
|
|
+ "fiber_length_stddev": float(self.channel.layers[1].fiber_length_stddev),
|
|
|
+ "lpf_cutoff": self.channel.layers[1].lpf_cutoff,
|
|
|
+ "rx_stddev": self.channel.layers[1].rx_stddev,
|
|
|
+ "sig_avg": self.channel.layers[1].sig_avg,
|
|
|
+ "enob": self.channel.layers[1].enob,
|
|
|
+ "custom_loss_fn": self.custom_loss_fn
|
|
|
+ }
|
|
|
+
|
|
|
+ if not name:
|
|
|
+ name = dt.utcnow().strftime("%Y%m%d-%H%M%S")
|
|
|
+ dir_str = os.path.join("exports", name)
|
|
|
+
|
|
|
+ if not os.path.exists(dir_str):
|
|
|
+ os.makedirs(dir_str)
|
|
|
+
|
|
|
+ with open(os.path.join(dir_str, 'params.json'), 'w') as outfile:
|
|
|
+ json.dump(params, outfile)
|
|
|
+
|
|
|
+ ################################################################################################################
|
|
|
+ # This section exports the weights of the encoder formatted using python variable instantiation syntax
|
|
|
+ ################################################################################################################
|
|
|
+
|
|
|
+ enc_weights, dec_weights = self.extract_weights()
|
|
|
+
|
|
|
+ enc_weights = [x.tolist() for x in enc_weights]
|
|
|
+ dec_weights = [x.tolist() for x in dec_weights]
|
|
|
+
|
|
|
+ enc_w = enc_weights[::2]
|
|
|
+ enc_b = enc_weights[1::2]
|
|
|
+
|
|
|
+ dec_w = dec_weights[::2]
|
|
|
+ dec_b = dec_weights[1::2]
|
|
|
+
|
|
|
+ with open(os.path.join(dir_str, 'enc_weights.py'), 'w') as outfile:
|
|
|
+ outfile.write("enc_weights = ")
|
|
|
+ outfile.write(str(enc_w))
|
|
|
+ outfile.write("\n\nenc_bias = ")
|
|
|
+ outfile.write(str(enc_b))
|
|
|
+
|
|
|
+ with open(os.path.join(dir_str, 'dec_weights.py'), 'w') as outfile:
|
|
|
+ outfile.write("dec_weights = ")
|
|
|
+ outfile.write(str(dec_w))
|
|
|
+ outfile.write("\n\ndec_bias = ")
|
|
|
+ outfile.write(str(dec_b))
|
|
|
+
|
|
|
+ ################################################################################################################
|
|
|
+
|
|
|
+ self.encoder.save(os.path.join(dir_str, 'encoder'))
|
|
|
+ self.decoder.save(os.path.join(dir_str, 'decoder'))
|
|
|
+
|
|
|
+ def extract_weights(self):
|
|
|
+ enc_weights = self.encoder.get_weights()
|
|
|
+ dec_weights = self.encoder.get_weights()
|
|
|
+
|
|
|
+ return enc_weights, dec_weights
|
|
|
+
|
|
|
+ def encode_stream(self, x):
|
|
|
+ enc_weights, dec_weights = self.extract_weights()
|
|
|
+
|
|
|
+ for i in range(len(enc_weights) // 2):
|
|
|
+ x = np.matmul(x, enc_weights[2 * i]) + enc_weights[2 * i + 1]
|
|
|
+
|
|
|
+ if i == len(enc_weights) // 2 - 1:
|
|
|
+ x = tf.keras.activations.sigmoid(x).numpy()
|
|
|
+ else:
|
|
|
+ x = tf.keras.activations.relu(x).numpy()
|
|
|
+
|
|
|
+ return x
|
|
|
+
|
|
|
+ def cost(self, y_true, y_pred):
|
|
|
+ symbol_cost = losses.CategoricalCrossentropy()(y_true, y_pred)
|
|
|
+
|
|
|
+ y_bits_true = SymbolsToBits(self.cardinality)(y_true)
|
|
|
+ y_bits_pred = SymbolsToBits(self.cardinality)(y_pred)
|
|
|
+
|
|
|
+ bit_cost = losses.BinaryCrossentropy()(y_bits_true, y_bits_pred)
|
|
|
+ return symbol_cost + self.alpha * bit_cost
|
|
|
+
|
|
|
+ def generate_random_inputs(self, num_of_blocks, return_vals=False):
|
|
|
+ """
|
|
|
+ A method that generates a list of one-hot encoded messages. This is utilized for generating the test/train data.
|
|
|
+
|
|
|
+ :param num_of_blocks: Number of blocks to generate. A block contains multiple messages to be transmitted in
|
|
|
+ consecutively to model ISI. The central message in a block is returned as the label for training.
|
|
|
+ :param return_vals: If true, the raw decimal values of the input sequence will be returned
|
|
|
+ """
|
|
|
+
|
|
|
+ cat = [np.arange(self.cardinality)]
|
|
|
+ enc = OneHotEncoder(handle_unknown='ignore', sparse=False, categories=cat)
|
|
|
+
|
|
|
+ mid_idx = int((self.messages_per_block - 1) / 2)
|
|
|
+
|
|
|
+ rand_int = np.random.randint(self.cardinality, size=(num_of_blocks * self.messages_per_block, 1))
|
|
|
+
|
|
|
+ out = enc.fit_transform(rand_int)
|
|
|
+
|
|
|
+ out_arr = np.reshape(out, (num_of_blocks, self.messages_per_block, self.cardinality))
|
|
|
+
|
|
|
+ if return_vals:
|
|
|
+ out_val = np.reshape(rand_int, (num_of_blocks, self.messages_per_block, 1))
|
|
|
+ return out_val, out_arr, out_arr[:, mid_idx, :]
|
|
|
+
|
|
|
+ return out_arr, out_arr[:, mid_idx, :]
|
|
|
+
|
|
|
+ def train(self, num_of_blocks=1e6, epochs=1, batch_size=None, train_size=0.8, lr=1e-3, **kwargs):
|
|
|
+ """
|
|
|
+ Method to train the autoencoder. Further configuration to the loss function, optimizer etc. can be made in here.
|
|
|
+
|
|
|
+ :param num_of_blocks: Number of blocks to generate for training. Analogous to the dataset size.
|
|
|
+ :param batch_size: Number of samples to consider on each update iteration of the optimization algorithm
|
|
|
+ :param train_size: Float less than 1 representing the proportion of the dataset to use for training
|
|
|
+ :param lr: The learning rate of the optimizer. Defines how quickly the algorithm converges
|
|
|
+ """
|
|
|
+ # X_train, y_train = self.generate_random_inputs(int(num_of_blocks * train_size))
|
|
|
+ # X_test, y_test = self.generate_random_inputs(int(num_of_blocks * (1 - train_size)))
|
|
|
+
|
|
|
+ train_data = BinaryTimeDistributedOneHotGenerator(
|
|
|
+ num_of_blocks, cardinality=self.cardinality, blocks=self.messages_per_block)
|
|
|
+ test_data = BinaryTimeDistributedOneHotGenerator(
|
|
|
+ num_of_blocks * .3, cardinality=self.cardinality, blocks=self.messages_per_block)
|
|
|
+
|
|
|
+ opt = tf.keras.optimizers.Adam(learning_rate=lr)
|
|
|
+
|
|
|
+ if self.custom_loss_fn:
|
|
|
+ loss_fn = self.cost
|
|
|
+ else:
|
|
|
+ loss_fn = losses.CategoricalCrossentropy()
|
|
|
+
|
|
|
+ self.compile(optimizer=opt,
|
|
|
+ loss=loss_fn,
|
|
|
+ metrics=['accuracy'],
|
|
|
+ loss_weights=None,
|
|
|
+ weighted_metrics=None,
|
|
|
+ run_eagerly=False
|
|
|
+ )
|
|
|
+
|
|
|
+ return self.fit(
|
|
|
+ train_data,
|
|
|
+ epochs=epochs,
|
|
|
+ shuffle=True,
|
|
|
+ validation_data=test_data,
|
|
|
+ **kwargs
|
|
|
+ )
|
|
|
+
|
|
|
+ def test(self, num_of_blocks=1e4, length_plot=False, plt_show=True, distance=None):
|
|
|
+ # X_test, y_test = self.generate_random_inputs(int(num_of_blocks))
|
|
|
+ test_data = BinaryTimeDistributedOneHotGenerator(
|
|
|
+ 1000, cardinality=self.cardinality, blocks=self.messages_per_block)
|
|
|
+
|
|
|
+ num_of_blocks = int(num_of_blocks / 1000)
|
|
|
+ if num_of_blocks <= 0:
|
|
|
+ num_of_blocks = 1
|
|
|
+
|
|
|
+ ber = []
|
|
|
+ ser = []
|
|
|
+
|
|
|
+ for i in range(num_of_blocks):
|
|
|
+ y_out = self.call(test_data.x)
|
|
|
+
|
|
|
+ y_pred = tf.argmax(y_out, axis=1)
|
|
|
+ y_true = tf.argmax(test_data.y, axis=1)
|
|
|
+ ser.append(1 - accuracy_score(y_true, y_pred))
|
|
|
+
|
|
|
+ bits_pred = SymbolsToBits(self.cardinality)(tf.one_hot(y_pred, self.cardinality)).numpy().flatten()
|
|
|
+ bits_true = SymbolsToBits(self.cardinality)(test_data.y).numpy().flatten()
|
|
|
+ ber.append(1 - accuracy_score(bits_true, bits_pred))
|
|
|
+ test_data.on_epoch_end()
|
|
|
+ print(f"\rTested {i + 1} of {num_of_blocks} blocks", end="")
|
|
|
+
|
|
|
+ print(f"\rTested all {num_of_blocks} blocks")
|
|
|
+ self.symbol_error_rate = sum(ser) / len(ser)
|
|
|
+ self.bit_error_rate = sum(ber) / len(ber)
|
|
|
+
|
|
|
+ if length_plot:
|
|
|
+
|
|
|
+ lengths = np.linspace(0, 70, 50)
|
|
|
+
|
|
|
+ ber_l = []
|
|
|
+
|
|
|
+ for l in lengths:
|
|
|
+ tx_channel = OpticalChannel(fs=self.channel.layers[1].fs,
|
|
|
+ num_of_samples=self.channel.layers[1].num_of_samples,
|
|
|
+ dispersion_factor=self.channel.layers[1].dispersion_factor,
|
|
|
+ fiber_length=l,
|
|
|
+ lpf_cutoff=self.channel.layers[1].lpf_cutoff,
|
|
|
+ rx_stddev=self.channel.layers[1].rx_stddev,
|
|
|
+ sig_avg=self.channel.layers[1].sig_avg,
|
|
|
+ enob=self.channel.layers[1].enob)
|
|
|
+
|
|
|
+ test_channel = tf.keras.Sequential([
|
|
|
+ layers.Flatten(),
|
|
|
+ tx_channel,
|
|
|
+ ExtractCentralMessage(self.messages_per_block, self.samples_per_symbol)
|
|
|
+ ], name="test channel (variable length)")
|
|
|
+
|
|
|
+ X_test_l, y_test_l = self.generate_random_inputs(int(num_of_blocks))
|
|
|
+ encoded = self.encoder(X_test_l)
|
|
|
+ after_ch = test_channel(encoded)
|
|
|
+ y_out_l = self.decoder(after_ch)
|
|
|
+
|
|
|
+ y_pred_l = tf.argmax(y_out_l, axis=1)
|
|
|
+ # y_true_l = tf.argmax(y_test_l, axis=1)
|
|
|
+
|
|
|
+ bits_pred_l = SymbolsToBits(self.cardinality)(tf.one_hot(y_pred_l, self.cardinality)).numpy().flatten()
|
|
|
+ bits_true_l = SymbolsToBits(self.cardinality)(y_test_l).numpy().flatten()
|
|
|
+
|
|
|
+ bit_error_rate_l = 1 - accuracy_score(bits_true_l, bits_pred_l)
|
|
|
+ ber_l.append(bit_error_rate_l)
|
|
|
+
|
|
|
+ plt.plot(lengths, ber_l)
|
|
|
+ plt.yscale('log')
|
|
|
+ if plt_show:
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+ print("SYMBOL ERROR RATE: {:e}".format(self.symbol_error_rate))
|
|
|
+ print("BIT ERROR RATE: {:e}".format(self.bit_error_rate))
|
|
|
+ return self.symbol_error_rate, self.bit_error_rate
|
|
|
+
|
|
|
+ def view_encoder(self):
|
|
|
+ '''
|
|
|
+ A method that views the learnt encoder for each distint message. This is displayed as a plot with a subplot for
|
|
|
+ each message/symbol.
|
|
|
+ '''
|
|
|
+
|
|
|
+ mid_idx = int((self.messages_per_block - 1) / 2)
|
|
|
+
|
|
|
+ # Generate inputs for encoder
|
|
|
+ messages = np.zeros((self.cardinality, self.messages_per_block, self.cardinality))
|
|
|
+
|
|
|
+ idx = 0
|
|
|
+ for msg in messages:
|
|
|
+ msg[mid_idx, idx] = 1
|
|
|
+ idx += 1
|
|
|
+
|
|
|
+ # Pass input through encoder and select middle messages
|
|
|
+ encoded = self.encoder(messages)
|
|
|
+ enc_messages = encoded[:, mid_idx, :]
|
|
|
+
|
|
|
+ # Compute subplot grid layout
|
|
|
+ i = 0
|
|
|
+ while 2 ** i < self.cardinality ** 0.5:
|
|
|
+ i += 1
|
|
|
+
|
|
|
+ num_x = int(2 ** i)
|
|
|
+ num_y = int(self.cardinality / num_x)
|
|
|
+
|
|
|
+ # Plot all symbols
|
|
|
+ fig, axs = plt.subplots(num_y, num_x, figsize=(2.5 * num_x, 2 * num_y))
|
|
|
+
|
|
|
+ t = np.arange(self.samples_per_symbol)
|
|
|
+ if isinstance(self.channel.layers[1], OpticalChannel):
|
|
|
+ t = t / self.channel.layers[1].fs
|
|
|
+
|
|
|
+ sym_idx = 0
|
|
|
+ for y in range(num_y):
|
|
|
+ for x in range(num_x):
|
|
|
+ axs[y, x].plot(t, enc_messages[sym_idx].numpy().flatten(), 'x')
|
|
|
+ axs[y, x].set_title('Symbol {}'.format(str(sym_idx)))
|
|
|
+ sym_idx += 1
|
|
|
+
|
|
|
+ for ax in axs.flat:
|
|
|
+ ax.set(xlabel='Time', ylabel='Amplitude', ylim=(0, 1))
|
|
|
+
|
|
|
+ for ax in axs.flat:
|
|
|
+ ax.label_outer()
|
|
|
+
|
|
|
+ plt.show()
|
|
|
+ pass
|
|
|
+
|
|
|
+ def view_sample_block(self):
|
|
|
+ '''
|
|
|
+ Generates a random string of input message and encodes them. In addition to this, the output is passed through
|
|
|
+ digitization layer without any quantization noise for the low pass filtering.
|
|
|
+ '''
|
|
|
+ # Generate a random block of messages
|
|
|
+ val, inp, _ = self.generate_random_inputs(num_of_blocks=1, return_vals=True)
|
|
|
+
|
|
|
+ # Encode and flatten the messages
|
|
|
+ enc = self.encoder(inp)
|
|
|
+ flat_enc = layers.Flatten()(enc)
|
|
|
+ chan_out = self.channel.layers[1](flat_enc)
|
|
|
+
|
|
|
+ # Instantiate LPF layer
|
|
|
+ lpf = DigitizationLayer(fs=self.channel.layers[1].fs,
|
|
|
+ num_of_samples=self.messages_per_block * self.samples_per_symbol,
|
|
|
+ sig_avg=0)
|
|
|
+
|
|
|
+ # Apply LPF
|
|
|
+ lpf_out = lpf(flat_enc)
|
|
|
+
|
|
|
+ a = np.fft.fft(lpf_out.numpy()).flatten()
|
|
|
+ f = np.fft.fftfreq(a.shape[-1]).flatten()
|
|
|
+
|
|
|
+ plt.plot(f, a)
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+ # Time axis
|
|
|
+ t = np.arange(self.messages_per_block * self.samples_per_symbol)
|
|
|
+ if isinstance(self.channel.layers[1], OpticalChannel):
|
|
|
+ t = t / self.channel.layers[1].fs
|
|
|
+
|
|
|
+ # Plot the concatenated symbols before and after LPF
|
|
|
+ plt.figure(figsize=(2 * self.messages_per_block, 6))
|
|
|
+
|
|
|
+ for i in range(1, self.messages_per_block):
|
|
|
+ plt.axvline(x=t[i * self.samples_per_symbol], color='black')
|
|
|
+
|
|
|
+ plt.plot(t, flat_enc.numpy().T, 'x')
|
|
|
+ plt.plot(t, lpf_out.numpy().T)
|
|
|
+ plt.plot(t, chan_out.numpy().flatten())
|
|
|
+ plt.ylim((0, 1))
|
|
|
+ plt.xlim((t.min(), t.max()))
|
|
|
+ plt.title(str(val[0, :, 0]))
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+ def call(self, inputs, training=None, mask=None):
|
|
|
+ tx = self.encoder(inputs)
|
|
|
+ rx = self.channel(tx)
|
|
|
+ outputs = self.decoder(rx)
|
|
|
+ return outputs
|
|
|
+
|
|
|
+
|
|
|
+def load_model(model_name=None):
|
|
|
+ if model_name is None:
|
|
|
+ models = os.listdir("exports")
|
|
|
+ if not models:
|
|
|
+ raise Exception("Unable to find a trained model. Please first train and save a model.")
|
|
|
+ model_name = models[-1]
|
|
|
+
|
|
|
+ param_file_path = os.path.join("exports", model_name, "params.json")
|
|
|
+
|
|
|
+ if not os.path.isfile(param_file_path):
|
|
|
+ raise Exception("Invalid File Name/Directory")
|
|
|
+ else:
|
|
|
+ with open(param_file_path, 'r') as param_file:
|
|
|
+ params = json.load(param_file)
|
|
|
+
|
|
|
+ optical_channel = OpticalChannel(fs=params["fs"],
|
|
|
+ num_of_samples=params["messages_per_block"] * params["samples_per_symbol"],
|
|
|
+ dispersion_factor=params["dispersion_factor"],
|
|
|
+ fiber_length=params["fiber_length"],
|
|
|
+ fiber_length_stddev=params["fiber_length_stddev"],
|
|
|
+ lpf_cutoff=params["lpf_cutoff"],
|
|
|
+ rx_stddev=params["rx_stddev"],
|
|
|
+ sig_avg=params["sig_avg"],
|
|
|
+ enob=params["enob"])
|
|
|
+
|
|
|
+ ae_model = EndToEndAutoencoder(cardinality=params["cardinality"],
|
|
|
+ samples_per_symbol=params["samples_per_symbol"],
|
|
|
+ messages_per_block=params["messages_per_block"],
|
|
|
+ channel=optical_channel,
|
|
|
+ custom_loss_fn=params["custom_loss_fn"])
|
|
|
+
|
|
|
+ ae_model.encoder = tf.keras.models.load_model(os.path.join("exports", model_name, "encoder"))
|
|
|
+ ae_model.decoder = tf.keras.models.load_model(os.path.join("exports", model_name, "decoder"))
|
|
|
+
|
|
|
+ return ae_model, params
|
|
|
+
|
|
|
+
|
|
|
+def run_tests(distance=50):
|
|
|
+ params = {
|
|
|
+ "fs": 336e9,
|
|
|
+ "cardinality": 64,
|
|
|
+ "samples_per_symbol": 48,
|
|
|
+ "messages_per_block": 9,
|
|
|
+ "dispersion_factor": (-21.7 * 1e-24),
|
|
|
+ "fiber_length": 50,
|
|
|
+ "fiber_length_stddev": 1,
|
|
|
+ "lpf_cutoff": 32e9,
|
|
|
+ "rx_stddev": 0.01,
|
|
|
+ "sig_avg": 0.5,
|
|
|
+ "enob": 6,
|
|
|
+ "custom_loss_fn": True
|
|
|
+ }
|
|
|
+
|
|
|
+ force_training = True
|
|
|
+
|
|
|
+ model_save_name = f'{params["fiber_length"]}km-{params["cardinality"]}' # "50km-64" # "20210401-145416"
|
|
|
+ param_file_path = os.path.join("exports", model_save_name, "params.json")
|
|
|
+
|
|
|
+ if os.path.isfile(param_file_path) and not force_training:
|
|
|
+ print("Importing model {}".format(model_save_name))
|
|
|
+ with open(param_file_path, 'r') as file:
|
|
|
+ params = json.load(file)
|
|
|
+
|
|
|
+ optical_channel = OpticalChannel(
|
|
|
+ fs=params["fs"],
|
|
|
+ num_of_samples=params["messages_per_block"] * params["samples_per_symbol"],
|
|
|
+ dispersion_factor=params["dispersion_factor"],
|
|
|
+ fiber_length=params["fiber_length"],
|
|
|
+ fiber_length_stddev=params["fiber_length_stddev"],
|
|
|
+ lpf_cutoff=params["lpf_cutoff"],
|
|
|
+ rx_stddev=params["rx_stddev"],
|
|
|
+ sig_avg=params["sig_avg"],
|
|
|
+ enob=params["enob"],
|
|
|
+ )
|
|
|
+
|
|
|
+ ae_model = EndToEndAutoencoder(
|
|
|
+ cardinality=params["cardinality"],
|
|
|
+ samples_per_symbol=params["samples_per_symbol"],
|
|
|
+ messages_per_block=params["messages_per_block"],
|
|
|
+ channel=optical_channel,
|
|
|
+ custom_loss_fn=params["custom_loss_fn"],
|
|
|
+ alpha=5,
|
|
|
+ )
|
|
|
+
|
|
|
+ checkpoint_name = f'/tmp/checkpoint/normal_{params["fiber_length"]}km'
|
|
|
+ model_checkpoint_callback0 = tf.keras.callbacks.ModelCheckpoint(
|
|
|
+ filepath=checkpoint_name,
|
|
|
+ save_weights_only=True,
|
|
|
+ monitor='val_accuracy',
|
|
|
+ mode='max',
|
|
|
+ save_best_only=True
|
|
|
+ )
|
|
|
+
|
|
|
+ early_stop = tf.keras.callbacks.EarlyStopping(
|
|
|
+ monitor='val_loss', min_delta=1e-2, patience=3, verbose=0,
|
|
|
+ mode='auto', baseline=None, restore_best_weights=True
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+ # model_checkpoint_callback1 = tf.keras.callbacks.ModelCheckpoint(
|
|
|
+ # filepath='/tmp/checkpoint/quantised',
|
|
|
+ # save_weights_only=True,
|
|
|
+ # monitor='val_accuracy',
|
|
|
+ # mode='max',
|
|
|
+ # save_best_only=True
|
|
|
+ # )
|
|
|
+
|
|
|
+ # if os.path.isfile(param_file_path) and not force_training:
|
|
|
+ # ae_model.encoder = tf.keras.models.load_model(os.path.join("exports", model_save_name, "encoder"))
|
|
|
+ # ae_model.decoder = tf.keras.models.load_model(os.path.join("exports", model_save_name, "decoder"))
|
|
|
+ # print("Loaded existing model from " + model_save_name)
|
|
|
+ # else:
|
|
|
+ if not os.path.isfile(checkpoint_name + '.index'):
|
|
|
+ history = ae_model.train(num_of_blocks=1e3, epochs=30, callbacks=[model_checkpoint_callback0, early_stop])
|
|
|
+ graphs.show_train_history(history, f"Autoencoder training at {params['fiber_length']}km")
|
|
|
+ ae_model.save_end_to_end(model_save_name)
|
|
|
+
|
|
|
+ ae_model.load_weights(checkpoint_name)
|
|
|
+ ser, ber = ae_model.test(num_of_blocks=3e6)
|
|
|
+ data = [(params["fiber_length"], ser, ber)]
|
|
|
+ for l in np.linspace(params["fiber_length"] - 2.5, params["fiber_length"] + 2.5, 6):
|
|
|
+ optical_channel = OpticalChannel(
|
|
|
+ fs=params["fs"],
|
|
|
+ num_of_samples=params["messages_per_block"] * params["samples_per_symbol"],
|
|
|
+ dispersion_factor=params["dispersion_factor"],
|
|
|
+ fiber_length=l,
|
|
|
+ fiber_length_stddev=params["fiber_length_stddev"],
|
|
|
+ lpf_cutoff=params["lpf_cutoff"],
|
|
|
+ rx_stddev=params["rx_stddev"],
|
|
|
+ sig_avg=params["sig_avg"],
|
|
|
+ enob=params["enob"],
|
|
|
+ )
|
|
|
+ ae_model = EndToEndAutoencoder(
|
|
|
+ cardinality=params["cardinality"],
|
|
|
+ samples_per_symbol=params["samples_per_symbol"],
|
|
|
+ messages_per_block=params["messages_per_block"],
|
|
|
+ channel=optical_channel,
|
|
|
+ custom_loss_fn=params["custom_loss_fn"],
|
|
|
+ alpha=5,
|
|
|
+ )
|
|
|
+ ae_model.load_weights(checkpoint_name)
|
|
|
+ print(f"Testing {l}km")
|
|
|
+ ser, ber = ae_model.test(num_of_blocks=3e6)
|
|
|
+ data.append((l, ser, ber))
|
|
|
+ return data
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ data0 = run_tests(90)
|
|
|
+ # data1 = run_tests(70)
|
|
|
+ # data2 = run_tests(80)
|
|
|
+ # print('Results 60: ', data0)
|
|
|
+ # print('Results 70: ', data1)
|
|
|
+ print('Results 90: ', data0)
|
|
|
+
|
|
|
+ # ae_model.test(num_of_blocks=3e6)
|
|
|
+ # ae_model.load_weights('/tmp/checkpoint/normal')
|
|
|
+
|
|
|
+ #
|
|
|
+ # quantize_model = tfmot.quantization.keras.quantize_model
|
|
|
+ # ae_model.decoder = quantize_model(ae_model.decoder)
|
|
|
+ #
|
|
|
+ # # ae_model.load_weights('/tmp/checkpoint/quantised')
|
|
|
+ #
|
|
|
+ # history = ae_model.train(num_of_blocks=1e3, epochs=20, callbacks=[model_checkpoint_callback1])
|
|
|
+ # graphs.show_train_history(history, f"Autoencoder quantised finetune at {params['fiber_length']}km")
|
|
|
+
|
|
|
+ # SYMBOL ERROR RATE: 2.039667e-03
|
|
|
+ # 2.358000e-03
|
|
|
+ # BIT ERROR RATE: 4.646000e-04
|
|
|
+ # 6.916000e-04
|
|
|
+
|
|
|
+ # SYMBOL ERROR RATE: 4.146667e-04
|
|
|
+ # BIT ERROR RATE: 1.642667e-04
|
|
|
+ # ae_model.save_end_to_end("50km-q3+")
|
|
|
+ # ae_model.test(num_of_blocks=3e6)
|
|
|
+
|
|
|
+ # Fibre, SER, BER
|
|
|
+ # 50, 2.233333e-05, 5.000000e-06
|
|
|
+ # 60, 6.556667e-04, 1.343333e-04
|
|
|
+ # 75, 1.570333e-03, 3.144667e-04
|
|
|
+ ## 80, 8.061667e-03, 1.612333e-03
|
|
|
+ # 85, 7.811333e-03, 1.601600e-03
|
|
|
+ # 90, 1.121933e-02, 2.255200e-03
|
|
|
+ ## 90, 1.266433e-02, 2.767467e-03
|
|
|
+
|
|
|
+ # 64 cardinality
|
|
|
+ # 50, 5.488000e-03, 1.089000e-03
|
|
|
+ pass
|