|
|
@@ -7,9 +7,9 @@ from tensorflow.keras import layers, losses
|
|
|
from tensorflow.keras.models import Model
|
|
|
import misc
|
|
|
|
|
|
-
|
|
|
latent_dim = 64
|
|
|
|
|
|
+
|
|
|
# print("# GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
|
|
|
|
|
|
|
|
|
@@ -18,14 +18,15 @@ class Autoencoder(Model):
|
|
|
super(Autoencoder, self).__init__()
|
|
|
self.latent_dim = latent_dim
|
|
|
self.encoder = tf.keras.Sequential()
|
|
|
- self.encoder.add(tf.keras.Input(shape=(4,)))
|
|
|
- self.encoder.add(layers.Dense(units=8, activation='relu'))
|
|
|
+ self.encoder.add(tf.keras.Input(shape=(4,), dtype=bool))
|
|
|
+ self.encoder.add(layers.Dense(units=32))
|
|
|
+ self.encoder.add(layers.Dense(units=2, activation='relu'))
|
|
|
# self.encoder.add(layers.Dropout(0.2))
|
|
|
# self.encoder.add(layers.ReLU(max_value=1.0))
|
|
|
|
|
|
self.decoder = tf.keras.Sequential()
|
|
|
self.decoder.add(tf.keras.Input(shape=(2,)))
|
|
|
- self.decoder.add(layers.Dense(units=8))
|
|
|
+ self.decoder.add(layers.Dense(units=32))
|
|
|
# self.encoder.add(tf.keras.layers.Dropout(0.2))
|
|
|
self.decoder.add(layers.Dense(units=4, activation='softmax'))
|
|
|
# self.decoder.add(layers.Softmax(units=4, dtype=bool))
|
|
|
@@ -47,6 +48,24 @@ class Autoencoder(Model):
|
|
|
return decoded
|
|
|
|
|
|
|
|
|
+def view_encoder(encoder, N, samples=1000):
|
|
|
+ test_values = misc.generate_random_bit_array(samples).reshape((-1, N))
|
|
|
+ mvector = np.array([2**i for i in range(N)], dtype=int)
|
|
|
+ symbols = (test_values * mvector).sum(axis=1)
|
|
|
+ encoded = encoder(test_values).numpy()
|
|
|
+ for i in range(2**N):
|
|
|
+ xy = encoded[symbols == i]
|
|
|
+ plt.plot(xy[:, 0], xy[:, 1], 'x', markersize=12, label=format(i, f'0{N}b'))
|
|
|
+ # plt.annotate(xy=[xy[:, 0].mean(), xy[:, 1].mean()] + [0.01, 0.01], s=format(i, f'0{N}b'))
|
|
|
+ plt.xlabel('Real')
|
|
|
+ plt.ylabel('Imaginary')
|
|
|
+ plt.title("Autoencoder generated alphabet")
|
|
|
+ plt.legend()
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
if __name__ == '__main__':
|
|
|
# (x_train, _), (x_test, _) = fashion_mnist.load_data()
|
|
|
#
|
|
|
@@ -56,19 +75,26 @@ if __name__ == '__main__':
|
|
|
# print(f"Train data: {x_train.shape}")
|
|
|
# print(f"Test data: {x_test.shape}")
|
|
|
|
|
|
- x_train = misc.generate_random_bit_array(1e5).reshape((-1, 4))
|
|
|
- x_test = misc.generate_random_bit_array(1e4).reshape((-1, 4))
|
|
|
+ samples = 1e5
|
|
|
+ x_train = misc.generate_random_bit_array(samples).reshape((-1, 4))
|
|
|
+ x_test_array = misc.generate_random_bit_array(samples * 0.2)
|
|
|
+ x_test = x_test_array.reshape((-1, 4))
|
|
|
|
|
|
autoencoder = Autoencoder(latent_dim)
|
|
|
autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
|
|
|
|
|
|
autoencoder.fit(x_train, x_train,
|
|
|
- epochs=1,
|
|
|
+ epochs=2,
|
|
|
shuffle=True,
|
|
|
validation_data=(x_test, x_test))
|
|
|
|
|
|
encoded_data = autoencoder.encoder(x_test)
|
|
|
- decoded_data = autoencoder.decoder(encoded_data)
|
|
|
+ decoded_data = autoencoder.decoder(encoded_data).numpy().reshape((-1,))
|
|
|
+
|
|
|
+ result = np.zeros(x_test_array.shape, dtype=bool)
|
|
|
+ result[decoded_data > 0.5] = True
|
|
|
+
|
|
|
+ print("Accuracy: %.4f" % accuracy_score(x_test_array, result))
|
|
|
+ view_encoder(autoencoder.encoder, 4)
|
|
|
|
|
|
- print(accuracy_score(x_test, encoded_data))
|
|
|
pass
|