|
|
@@ -0,0 +1,142 @@
|
|
|
+# Import modules
|
|
|
+import numpy as np
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+from sklearn.datasets import load_iris
|
|
|
+
|
|
|
+
|
|
|
+# Import PySwarms
|
|
|
+import pyswarms as ps
|
|
|
+import misc
|
|
|
+
|
|
|
+data = load_iris()
|
|
|
+
|
|
|
+# Store the features as X and the labels as y
|
|
|
+#X = data.data
|
|
|
+#y = data.target
|
|
|
+
|
|
|
+n = 4
|
|
|
+
|
|
|
+n_inputs = 2 ** n
|
|
|
+n_hidden = 2 ** (n + 1)
|
|
|
+n_classes = 2
|
|
|
+
|
|
|
+samples = 1000
|
|
|
+
|
|
|
+
|
|
|
+x_train = misc.generate_random_bit_array(samples).reshape((-1, n))
|
|
|
+x_train_ho = misc.bit_matrix2one_hot(x_train)
|
|
|
+x_test_array = misc.generate_random_bit_array(samples * 0.3)
|
|
|
+x_test = x_test_array.reshape((-1, n))
|
|
|
+x_test_ho = misc.bit_matrix2one_hot(x_test)
|
|
|
+
|
|
|
+def logits_function(p):
|
|
|
+ """ Calculate roll-back the weights and biases
|
|
|
+
|
|
|
+ Inputs
|
|
|
+ ------
|
|
|
+ p: np.ndarray
|
|
|
+ The dimensions should include an unrolled version of the
|
|
|
+ weights and biases.
|
|
|
+
|
|
|
+ Returns
|
|
|
+ -------
|
|
|
+ numpy.ndarray of logits for layer 2
|
|
|
+
|
|
|
+ """
|
|
|
+ # Neural network architecture
|
|
|
+ n_inputs = 2 ** n
|
|
|
+ n_hidden = 2 ** (n + 1)
|
|
|
+ n_classes = 2
|
|
|
+
|
|
|
+ # Roll-back the weights and biases
|
|
|
+ W1 = p[0:n_inputs * n_hidden].reshape((n_inputs, n_hidden))
|
|
|
+ b1 = p[n_inputs * n_hidden:n_inputs * n_hidden + n_hidden].reshape((n_hidden,))
|
|
|
+ W2 = p[n_inputs * n_hidden + n_hidden:n_inputs * n_hidden + n_hidden + n_hidden * n_classes].reshape(
|
|
|
+ (n_hidden, n_classes))
|
|
|
+ b2 = p[
|
|
|
+ n_inputs * n_hidden + n_hidden + n_hidden * n_classes:n_inputs * n_hidden + n_hidden + n_hidden * n_classes + n_classes].reshape(
|
|
|
+ (n_classes,))
|
|
|
+
|
|
|
+ # Perform forward propagation
|
|
|
+ z1 = x_train_ho.dot(W1) + b1 # Pre-activation in Layer 1
|
|
|
+ a1 = np.tanh(z1) # Activation in Layer 1
|
|
|
+ z2 = a1.dot(W2) + b2 # Pre-activation in Layer 2
|
|
|
+ logits = z2 # Logits for Layer 2
|
|
|
+
|
|
|
+ return logits
|
|
|
+
|
|
|
+# Forward propagation
|
|
|
+def forward_prop(params):
|
|
|
+ """Forward propagation as objective function
|
|
|
+
|
|
|
+ This computes for the forward propagation of the neural network, as
|
|
|
+ well as the loss.
|
|
|
+
|
|
|
+ Inputs
|
|
|
+ ------
|
|
|
+ params: np.ndarray
|
|
|
+ The dimensions should include an unrolled version of the
|
|
|
+ weights and biases.
|
|
|
+
|
|
|
+ Returns
|
|
|
+ -------
|
|
|
+ float
|
|
|
+ The computed negative log-likelihood loss given the parameters
|
|
|
+ """
|
|
|
+
|
|
|
+ logits = logits_function(params)
|
|
|
+
|
|
|
+ # Compute for the softmax of the logits
|
|
|
+ exp_scores = np.exp(logits)
|
|
|
+ probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
|
|
|
+
|
|
|
+ # Compute for the negative log likelihood
|
|
|
+
|
|
|
+ corect_logprobs = -np.log(probs[range(samples), x_train_ho])
|
|
|
+ loss = np.sum(corect_logprobs) / samples
|
|
|
+
|
|
|
+ return loss
|
|
|
+
|
|
|
+def f(x):
|
|
|
+ """Higher-level method to do forward_prop in the
|
|
|
+ whole swarm.
|
|
|
+
|
|
|
+ Inputs
|
|
|
+ ------
|
|
|
+ x: numpy.ndarray of shape (n_particles, dimensions)
|
|
|
+ The swarm that will perform the search
|
|
|
+
|
|
|
+ Returns
|
|
|
+ -------
|
|
|
+ numpy.ndarray of shape (n_particles, )
|
|
|
+ The computed loss for each particle
|
|
|
+ """
|
|
|
+ n_particles = x.shape[0]
|
|
|
+ j = [forward_prop(x[i]) for i in range(n_particles)]
|
|
|
+ return np.array(j)
|
|
|
+
|
|
|
+# Initialize swarm
|
|
|
+options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}
|
|
|
+
|
|
|
+# Call instance of PSO
|
|
|
+dimensions = (n_inputs * n_hidden) + (n_hidden * n_classes) + n_hidden + n_classes
|
|
|
+optimizer = ps.single.GlobalBestPSO(n_particles=100, dimensions=dimensions, options=options)
|
|
|
+
|
|
|
+# Perform optimization
|
|
|
+cost, pos = optimizer.optimize(f, iters=1000)
|
|
|
+
|
|
|
+def predict(pos):
|
|
|
+ """
|
|
|
+ Use the trained weights to perform class predictions.
|
|
|
+
|
|
|
+ Inputs
|
|
|
+ ------
|
|
|
+ pos: numpy.ndarray
|
|
|
+ Position matrix found by the swarm. Will be rolled
|
|
|
+ into weights and biases.
|
|
|
+ """
|
|
|
+ logits = logits_function(pos)
|
|
|
+ y_pred = np.argmax(logits, axis=1)
|
|
|
+ return y_pred
|
|
|
+
|
|
|
+print((predict(pos) == x_train_ho).mean())
|