|
@@ -1,142 +1,8 @@
|
|
|
import numpy as np
|
|
import numpy as np
|
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.pyplot as plt
|
|
|
-import scipy
|
|
|
|
|
from scipy import interpolate
|
|
from scipy import interpolate
|
|
|
-import tensorflow as tf
|
|
|
|
|
-from tensorflow.keras import layers, losses
|
|
|
|
|
-import math
|
|
|
|
|
-
|
|
|
|
|
-class ExtractCentralMessage(layers.Layer):
|
|
|
|
|
- def __init__(self, messages_per_block, samples_per_symbol):
|
|
|
|
|
- """
|
|
|
|
|
- A keras layer that extracts the central message(symbol) in a block.
|
|
|
|
|
-
|
|
|
|
|
- :param messages_per_block: Total number of messages in transmission block
|
|
|
|
|
- :param samples_per_symbol: Number of samples per transmitted symbol
|
|
|
|
|
- """
|
|
|
|
|
- super(ExtractCentralMessage, self).__init__()
|
|
|
|
|
-
|
|
|
|
|
- temp_w = np.zeros((messages_per_block * samples_per_symbol, samples_per_symbol))
|
|
|
|
|
- i = np.identity(samples_per_symbol)
|
|
|
|
|
- begin = int(samples_per_symbol * ((messages_per_block - 1) / 2))
|
|
|
|
|
- end = int(samples_per_symbol * ((messages_per_block + 1) / 2))
|
|
|
|
|
- temp_w[begin:end, :] = i
|
|
|
|
|
-
|
|
|
|
|
- self.w = tf.convert_to_tensor(temp_w, dtype=tf.float32)
|
|
|
|
|
-
|
|
|
|
|
- def call(self, inputs, **kwargs):
|
|
|
|
|
- return tf.matmul(inputs, self.w)
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-class AwgnChannel(layers.Layer):
|
|
|
|
|
- def __init__(self, rx_stddev=0.1):
|
|
|
|
|
- """
|
|
|
|
|
- A additive white gaussian noise channel model. The GaussianNoise class is utilized to prevent identical noise
|
|
|
|
|
- being applied every time the call function is called.
|
|
|
|
|
-
|
|
|
|
|
- :param rx_stddev: Standard deviation of receiver noise (due to e.g. TIA circuit)
|
|
|
|
|
- """
|
|
|
|
|
- super(AwgnChannel, self).__init__()
|
|
|
|
|
- self.noise_layer = layers.GaussianNoise(rx_stddev)
|
|
|
|
|
-
|
|
|
|
|
- def call(self, inputs, **kwargs):
|
|
|
|
|
- return self.noise_layer.call(inputs, training=True)
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-class DigitizationLayer(layers.Layer):
|
|
|
|
|
- def __init__(self,
|
|
|
|
|
- fs,
|
|
|
|
|
- num_of_samples,
|
|
|
|
|
- lpf_cutoff=32e9,
|
|
|
|
|
- q_stddev=0.1):
|
|
|
|
|
- """
|
|
|
|
|
- This layer simulated the finite bandwidth of the hardware by means of a low pass filter. In addition to this,
|
|
|
|
|
- artefacts casued by quantization is modelled by the addition of white gaussian noise of a given stddev.
|
|
|
|
|
-
|
|
|
|
|
- :param fs: Sampling frequency of the simulation in Hz
|
|
|
|
|
- :param num_of_samples: Total number of samples in the input
|
|
|
|
|
- :param lpf_cutoff: Cutoff frequency of LPF modelling finite bandwidth in ADC/DAC
|
|
|
|
|
- :param q_stddev: Standard deviation of quantization noise at ADC/DAC
|
|
|
|
|
- """
|
|
|
|
|
- super(DigitizationLayer, self).__init__()
|
|
|
|
|
-
|
|
|
|
|
- self.noise_layer = layers.GaussianNoise(q_stddev)
|
|
|
|
|
- freq = np.fft.fftfreq(num_of_samples, d=1 / fs)
|
|
|
|
|
- temp = np.ones(freq.shape)
|
|
|
|
|
-
|
|
|
|
|
- for idx, val in np.ndenumerate(freq):
|
|
|
|
|
- if np.abs(val) > lpf_cutoff:
|
|
|
|
|
- temp[idx] = 0
|
|
|
|
|
-
|
|
|
|
|
- self.lpf_multiplier = tf.convert_to_tensor(temp, dtype=tf.complex64)
|
|
|
|
|
-
|
|
|
|
|
- def call(self, inputs, **kwargs):
|
|
|
|
|
- complex_in = tf.cast(inputs, dtype=tf.complex64)
|
|
|
|
|
- val_f = tf.signal.fft(complex_in)
|
|
|
|
|
- filtered_f = tf.math.multiply(self.lpf_multiplier, val_f)
|
|
|
|
|
- filtered_t = tf.signal.ifft(filtered_f)
|
|
|
|
|
- real_t = tf.cast(filtered_t, dtype=tf.float32)
|
|
|
|
|
- noisy = self.noise_layer.call(real_t, training=True)
|
|
|
|
|
- return noisy
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-class OpticalChannel(layers.Layer):
|
|
|
|
|
- def __init__(self,
|
|
|
|
|
- fs,
|
|
|
|
|
- num_of_samples,
|
|
|
|
|
- dispersion_factor,
|
|
|
|
|
- fiber_length,
|
|
|
|
|
- lpf_cutoff=32e9,
|
|
|
|
|
- rx_stddev=0.03,
|
|
|
|
|
- q_stddev=0.01):
|
|
|
|
|
- """
|
|
|
|
|
- A channel model that simulates chromatic dispersion, non-linear photodiode detection, finite bandwidth of
|
|
|
|
|
- ADC/DAC as well as additive white gaussian noise in optical communication channels.
|
|
|
|
|
-
|
|
|
|
|
- :param fs: Sampling frequency of the simulation in Hz
|
|
|
|
|
- :param num_of_samples: Total number of samples in the input
|
|
|
|
|
- :param dispersion_factor: Dispersion factor in s^2/km
|
|
|
|
|
- :param fiber_length: Length of fiber to model in km
|
|
|
|
|
- :param lpf_cutoff: Cutoff frequency of LPF modelling finite bandwidth in ADC/DAC
|
|
|
|
|
- :param rx_stddev: Standard deviation of receiver noise (due to e.g. TIA circuit)
|
|
|
|
|
- :param q_stddev: Standard deviation of quantization noise at ADC/DAC
|
|
|
|
|
- """
|
|
|
|
|
- super(OpticalChannel, self).__init__()
|
|
|
|
|
-
|
|
|
|
|
- self.noise_layer = layers.GaussianNoise(rx_stddev)
|
|
|
|
|
- self.digitization_layer = DigitizationLayer(fs=fs,
|
|
|
|
|
- num_of_samples=num_of_samples,
|
|
|
|
|
- lpf_cutoff=lpf_cutoff,
|
|
|
|
|
- q_stddev=q_stddev)
|
|
|
|
|
- self.flatten_layer = layers.Flatten()
|
|
|
|
|
-
|
|
|
|
|
- self.fs = fs
|
|
|
|
|
- self.freq = tf.convert_to_tensor(np.fft.fftfreq(num_of_samples, d=1 / fs), dtype=tf.complex128)
|
|
|
|
|
- self.multiplier = tf.math.exp(0.5j * dispersion_factor * fiber_length * tf.math.square(2 * math.pi * self.freq))
|
|
|
|
|
-
|
|
|
|
|
- def call(self, inputs, **kwargs):
|
|
|
|
|
- # DAC LPF and noise
|
|
|
|
|
- dac_out = self.digitization_layer(inputs)
|
|
|
|
|
-
|
|
|
|
|
- # Chromatic Dispersion
|
|
|
|
|
- complex_val = tf.cast(dac_out, dtype=tf.complex128)
|
|
|
|
|
- val_f = tf.signal.fft(complex_val)
|
|
|
|
|
- disp_f = tf.math.multiply(val_f, self.multiplier)
|
|
|
|
|
- disp_t = tf.signal.ifft(disp_f)
|
|
|
|
|
-
|
|
|
|
|
- # Squared-Law Detection
|
|
|
|
|
- pd_out = tf.square(tf.abs(disp_t))
|
|
|
|
|
-
|
|
|
|
|
- # Casting back to floatx
|
|
|
|
|
- real_val = tf.cast(pd_out, dtype=tf.float32)
|
|
|
|
|
-
|
|
|
|
|
- # Adding photo-diode receiver noise
|
|
|
|
|
- rx_signal = self.noise_layer.call(real_val, training=True)
|
|
|
|
|
-
|
|
|
|
|
- # ADC LPF and noise
|
|
|
|
|
- adc_out = self.digitization_layer(rx_signal)
|
|
|
|
|
-
|
|
|
|
|
- return adc_out
|
|
|
|
|
|
|
+
|
|
|
|
|
+from models.custom_layers import OpticalChannel
|
|
|
|
|
|
|
|
SAMPLING_FREQUENCY = 336e9
|
|
SAMPLING_FREQUENCY = 336e9
|
|
|
CARDINALITY = 4
|
|
CARDINALITY = 4
|
|
@@ -146,70 +12,71 @@ DISPERSION_FACTOR = -21.7 * 1e-24
|
|
|
FIBER_LENGTH = 50
|
|
FIBER_LENGTH = 50
|
|
|
|
|
|
|
|
optical_channel = OpticalChannel(fs=SAMPLING_FREQUENCY,
|
|
optical_channel = OpticalChannel(fs=SAMPLING_FREQUENCY,
|
|
|
- num_of_samples=80,
|
|
|
|
|
- dispersion_factor=DISPERSION_FACTOR,
|
|
|
|
|
- fiber_length=FIBER_LENGTH)
|
|
|
|
|
-K = 64 # number of OFDM subcarriers
|
|
|
|
|
-CP = K//4 # length of the cyclic prefix: 25% of the block
|
|
|
|
|
-P = 8 # number of pilot carriers per OFDM block
|
|
|
|
|
-pilotValue = 3+3j # The known value each pilot transmits
|
|
|
|
|
|
|
+ num_of_samples=80,
|
|
|
|
|
+ dispersion_factor=DISPERSION_FACTOR,
|
|
|
|
|
+ fiber_length=FIBER_LENGTH)
|
|
|
|
|
+
|
|
|
|
|
+K = 64 # number of OFDM subcarriers
|
|
|
|
|
+CP = K // 4 # length of the cyclic prefix: 25% of the block
|
|
|
|
|
+P = 8 # number of pilot carriers per OFDM block
|
|
|
|
|
+pilotValue = 3 + 3j # The known value each pilot transmits
|
|
|
|
|
|
|
|
allCarriers = np.arange(K) # indices of all subcarriers ([0, 1, ... K-1])
|
|
allCarriers = np.arange(K) # indices of all subcarriers ([0, 1, ... K-1])
|
|
|
|
|
|
|
|
-pilotCarriers = allCarriers[::K//P] # Pilots is every (K/P)th carrier.
|
|
|
|
|
|
|
+pilotCarriers = allCarriers[::K // P] # Pilots is every (K/P)th carrier.
|
|
|
|
|
|
|
|
# For convenience of channel estimation, let's make the last carriers also be a pilot
|
|
# For convenience of channel estimation, let's make the last carriers also be a pilot
|
|
|
pilotCarriers = np.hstack([pilotCarriers, np.array([allCarriers[-1]])])
|
|
pilotCarriers = np.hstack([pilotCarriers, np.array([allCarriers[-1]])])
|
|
|
-P = P+1
|
|
|
|
|
|
|
+P = P + 1
|
|
|
|
|
|
|
|
# data carriers are all remaining carriers
|
|
# data carriers are all remaining carriers
|
|
|
dataCarriers = np.delete(allCarriers, pilotCarriers)
|
|
dataCarriers = np.delete(allCarriers, pilotCarriers)
|
|
|
|
|
|
|
|
-print ("allCarriers: %s" % allCarriers)
|
|
|
|
|
-print ("pilotCarriers: %s" % pilotCarriers)
|
|
|
|
|
-print ("dataCarriers: %s" % dataCarriers)
|
|
|
|
|
|
|
+print("allCarriers: %s" % allCarriers)
|
|
|
|
|
+print("pilotCarriers: %s" % pilotCarriers)
|
|
|
|
|
+print("dataCarriers: %s" % dataCarriers)
|
|
|
plt.plot(pilotCarriers, np.zeros_like(pilotCarriers), 'bo', label='pilot')
|
|
plt.plot(pilotCarriers, np.zeros_like(pilotCarriers), 'bo', label='pilot')
|
|
|
plt.plot(dataCarriers, np.zeros_like(dataCarriers), 'ro', label='data')
|
|
plt.plot(dataCarriers, np.zeros_like(dataCarriers), 'ro', label='data')
|
|
|
|
|
|
|
|
-mu = 4 # bits per symbol (i.e. 16QAM)
|
|
|
|
|
-payloadBits_per_OFDM = len(dataCarriers)*mu # number of payload bits per OFDM symbol
|
|
|
|
|
|
|
+mu = 4 # bits per symbol (i.e. 16QAM)
|
|
|
|
|
+payloadBits_per_OFDM = len(dataCarriers) * mu # number of payload bits per OFDM symbol
|
|
|
|
|
|
|
|
mapping_table = {
|
|
mapping_table = {
|
|
|
- (0,0,0,0) : -3-3j,
|
|
|
|
|
- (0,0,0,1) : -3-1j,
|
|
|
|
|
- (0,0,1,0) : -3+3j,
|
|
|
|
|
- (0,0,1,1) : -3+1j,
|
|
|
|
|
- (0,1,0,0) : -1-3j,
|
|
|
|
|
- (0,1,0,1) : -1-1j,
|
|
|
|
|
- (0,1,1,0) : -1+3j,
|
|
|
|
|
- (0,1,1,1) : -1+1j,
|
|
|
|
|
- (1,0,0,0) : 3-3j,
|
|
|
|
|
- (1,0,0,1) : 3-1j,
|
|
|
|
|
- (1,0,1,0) : 3+3j,
|
|
|
|
|
- (1,0,1,1) : 3+1j,
|
|
|
|
|
- (1,1,0,0) : 1-3j,
|
|
|
|
|
- (1,1,0,1) : 1-1j,
|
|
|
|
|
- (1,1,1,0) : 1+3j,
|
|
|
|
|
- (1,1,1,1) : 1+1j
|
|
|
|
|
|
|
+ (0, 0, 0, 0): -3 - 3j,
|
|
|
|
|
+ (0, 0, 0, 1): -3 - 1j,
|
|
|
|
|
+ (0, 0, 1, 0): -3 + 3j,
|
|
|
|
|
+ (0, 0, 1, 1): -3 + 1j,
|
|
|
|
|
+ (0, 1, 0, 0): -1 - 3j,
|
|
|
|
|
+ (0, 1, 0, 1): -1 - 1j,
|
|
|
|
|
+ (0, 1, 1, 0): -1 + 3j,
|
|
|
|
|
+ (0, 1, 1, 1): -1 + 1j,
|
|
|
|
|
+ (1, 0, 0, 0): 3 - 3j,
|
|
|
|
|
+ (1, 0, 0, 1): 3 - 1j,
|
|
|
|
|
+ (1, 0, 1, 0): 3 + 3j,
|
|
|
|
|
+ (1, 0, 1, 1): 3 + 1j,
|
|
|
|
|
+ (1, 1, 0, 0): 1 - 3j,
|
|
|
|
|
+ (1, 1, 0, 1): 1 - 1j,
|
|
|
|
|
+ (1, 1, 1, 0): 1 + 3j,
|
|
|
|
|
+ (1, 1, 1, 1): 1 + 1j
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
mapping_table_dec = {
|
|
mapping_table_dec = {
|
|
|
- (0) : -3-3j,
|
|
|
|
|
- (1) : -3-1j,
|
|
|
|
|
- (2) : -3+3j,
|
|
|
|
|
- (3) : -3+1j,
|
|
|
|
|
- (4) : -1-3j,
|
|
|
|
|
- (5) : -1-1j,
|
|
|
|
|
- (6) : -1+3j,
|
|
|
|
|
- (7) : -1+1j,
|
|
|
|
|
- (8) : 3-3j,
|
|
|
|
|
- (9) : 3-1j,
|
|
|
|
|
- (10) : 3+3j,
|
|
|
|
|
- (11) : 3+1j,
|
|
|
|
|
- (12) : 1-3j,
|
|
|
|
|
- (13) : 1-1j,
|
|
|
|
|
- (14) : 1+3j,
|
|
|
|
|
- (15) : 1+1j
|
|
|
|
|
|
|
+ (0): -3 - 3j,
|
|
|
|
|
+ (1): -3 - 1j,
|
|
|
|
|
+ (2): -3 + 3j,
|
|
|
|
|
+ (3): -3 + 1j,
|
|
|
|
|
+ (4): -1 - 3j,
|
|
|
|
|
+ (5): -1 - 1j,
|
|
|
|
|
+ (6): -1 + 3j,
|
|
|
|
|
+ (7): -1 + 1j,
|
|
|
|
|
+ (8): 3 - 3j,
|
|
|
|
|
+ (9): 3 - 1j,
|
|
|
|
|
+ (10): 3 + 3j,
|
|
|
|
|
+ (11): 3 + 1j,
|
|
|
|
|
+ (12): 1 - 3j,
|
|
|
|
|
+ (13): 1 - 1j,
|
|
|
|
|
+ (14): 1 + 3j,
|
|
|
|
|
+ (15): 1 + 1j
|
|
|
}
|
|
}
|
|
|
for b3 in [0, 1]:
|
|
for b3 in [0, 1]:
|
|
|
for b2 in [0, 1]:
|
|
for b2 in [0, 1]:
|
|
@@ -218,12 +85,12 @@ for b3 in [0, 1]:
|
|
|
B = (b3, b2, b1, b0)
|
|
B = (b3, b2, b1, b0)
|
|
|
Q = mapping_table[B]
|
|
Q = mapping_table[B]
|
|
|
plt.plot(Q.real, Q.imag, 'bo')
|
|
plt.plot(Q.real, Q.imag, 'bo')
|
|
|
- plt.text(Q.real, Q.imag+0.2, "".join(str(x) for x in B), ha='center')
|
|
|
|
|
|
|
+ plt.text(Q.real, Q.imag + 0.2, "".join(str(x) for x in B), ha='center')
|
|
|
|
|
|
|
|
demapping_table = {v: k for k, v in mapping_table.items()}
|
|
demapping_table = {v: k for k, v in mapping_table.items()}
|
|
|
|
|
|
|
|
# Replace with our channel
|
|
# Replace with our channel
|
|
|
-channelResponse = np.array([1, 0, 0.3+0.3j]) # the impulse response of the wireless channel
|
|
|
|
|
|
|
+channelResponse = np.array([1, 0, 0.3 + 0.3j]) # the impulse response of the wireless channel
|
|
|
H_exact = np.fft.fft(channelResponse, K)
|
|
H_exact = np.fft.fft(channelResponse, K)
|
|
|
plt.plot(allCarriers, abs(H_exact))
|
|
plt.plot(allCarriers, abs(H_exact))
|
|
|
|
|
|
|
@@ -231,18 +98,21 @@ SNRdb = 25 # signal to noise-ratio in dB at the receiver
|
|
|
|
|
|
|
|
# Here
|
|
# Here
|
|
|
|
|
|
|
|
-#water filling, gradient decent methods for optimising the symbol mapping, instead of 16 QAM
|
|
|
|
|
|
|
+# water filling, gradient decent methods for optimising the symbol mapping, instead of 16 QAM
|
|
|
|
|
+
|
|
|
|
|
+bits = np.random.binomial(n=1, p=0.5, size=(payloadBits_per_OFDM,))
|
|
|
|
|
+print("Bits count: ", len(bits))
|
|
|
|
|
+print("First 20 bits: ", bits[:20])
|
|
|
|
|
+print("Mean of bits (should be around 0.5): ", np.mean(bits))
|
|
|
|
|
|
|
|
-bits = np.random.binomial(n=1, p=0.5, size=(payloadBits_per_OFDM, ))
|
|
|
|
|
-print ("Bits count: ", len(bits))
|
|
|
|
|
-print ("First 20 bits: ", bits[:20])
|
|
|
|
|
-print ("Mean of bits (should be around 0.5): ", np.mean(bits))
|
|
|
|
|
|
|
|
|
|
def SP(bits):
|
|
def SP(bits):
|
|
|
return bits.reshape((len(dataCarriers), mu))
|
|
return bits.reshape((len(dataCarriers), mu))
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
bits_SP = SP(bits)
|
|
bits_SP = SP(bits)
|
|
|
-print ("First 5 bit groups")
|
|
|
|
|
-print (bits_SP[:5,:])
|
|
|
|
|
|
|
+print("First 5 bit groups")
|
|
|
|
|
+print(bits_SP[:5, :])
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_random_inputs(num_of_blocks, return_vals=False):
|
|
def generate_random_inputs(num_of_blocks, return_vals=False):
|
|
@@ -261,47 +131,62 @@ def generate_random_inputs(num_of_blocks, return_vals=False):
|
|
|
# out = enc.fit_transform(rand_int)
|
|
# out = enc.fit_transform(rand_int)
|
|
|
# for symbol in rand_int:
|
|
# for symbol in rand_int:
|
|
|
|
|
|
|
|
- #out_arr = np.reshape(rand_int, (num_of_blocks, self.messages_per_block))
|
|
|
|
|
- #t_out_arr = np.repeat(out_arr, self.samples_per_symbol, axis=1)
|
|
|
|
|
|
|
+ # out_arr = np.reshape(rand_int, (num_of_blocks, self.messages_per_block))
|
|
|
|
|
+ # t_out_arr = np.repeat(out_arr, self.samples_per_symbol, axis=1)
|
|
|
|
|
|
|
|
- #mid_idx = int((self.messages_per_block - 1) / 2)
|
|
|
|
|
|
|
+ # mid_idx = int((self.messages_per_block - 1) / 2)
|
|
|
|
|
|
|
|
- #if return_vals:
|
|
|
|
|
- # out_val = np.reshape(rand_int, (num_of_blocks, self.messages_per_block, 1))
|
|
|
|
|
- # return out_val, out_arr, out_arr[:, mid_idx, :]
|
|
|
|
|
|
|
+ # if return_vals:
|
|
|
|
|
+ # out_val = np.reshape(rand_int, (num_of_blocks, self.messages_per_block, 1))
|
|
|
|
|
+ # return out_val, out_arr, out_arr[:, mid_idx, :]
|
|
|
|
|
|
|
|
return rand_int
|
|
return rand_int
|
|
|
|
|
|
|
|
|
|
+
|
|
|
bits_SP1 = generate_random_inputs(num_of_blocks=1000).astype('uint8')
|
|
bits_SP1 = generate_random_inputs(num_of_blocks=1000).astype('uint8')
|
|
|
-#bits_SP11 = np.unpackbits(bits_SP1, axis=1)
|
|
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# bits_SP11 = np.unpackbits(bits_SP1, axis=1)
|
|
|
|
|
|
|
|
def Mapping(bits):
|
|
def Mapping(bits):
|
|
|
return np.array([mapping_table[tuple(b)] for b in bits])
|
|
return np.array([mapping_table[tuple(b)] for b in bits])
|
|
|
|
|
|
|
|
|
|
+
|
|
|
def Mapping_dec(bits):
|
|
def Mapping_dec(bits):
|
|
|
return np.array([mapping_table_dec[tuple(b)] for b in bits])
|
|
return np.array([mapping_table_dec[tuple(b)] for b in bits])
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
QAM = Mapping(bits_SP)
|
|
QAM = Mapping(bits_SP)
|
|
|
QAM1 = Mapping_dec(bits_SP1)
|
|
QAM1 = Mapping_dec(bits_SP1)
|
|
|
print("First 5 QAM symbols and bits:")
|
|
print("First 5 QAM symbols and bits:")
|
|
|
-print(bits_SP[:5,:])
|
|
|
|
|
|
|
+print(bits_SP[:5, :])
|
|
|
print(QAM[:5])
|
|
print(QAM[:5])
|
|
|
|
|
|
|
|
|
|
+
|
|
|
def OFDM_symbol(QAM_payload):
|
|
def OFDM_symbol(QAM_payload):
|
|
|
- symbol = np.zeros(K, dtype=complex) # the overall K subcarriers
|
|
|
|
|
|
|
+ symbol = np.zeros(K, dtype=complex) # the overall K subcarriers
|
|
|
symbol[pilotCarriers] = pilotValue # allocate the pilot subcarriers
|
|
symbol[pilotCarriers] = pilotValue # allocate the pilot subcarriers
|
|
|
symbol[dataCarriers] = QAM_payload # allocate the pilot subcarriers
|
|
symbol[dataCarriers] = QAM_payload # allocate the pilot subcarriers
|
|
|
return symbol
|
|
return symbol
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
OFDM_data = OFDM_symbol(QAM)
|
|
OFDM_data = OFDM_symbol(QAM)
|
|
|
print("Number of OFDM carriers in frequency domain: ", len(OFDM_data))
|
|
print("Number of OFDM carriers in frequency domain: ", len(OFDM_data))
|
|
|
|
|
|
|
|
|
|
+
|
|
|
def IDFT(OFDM_data):
|
|
def IDFT(OFDM_data):
|
|
|
return np.fft.ifft(OFDM_data)
|
|
return np.fft.ifft(OFDM_data)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
OFDM_time = IDFT(OFDM_data)
|
|
OFDM_time = IDFT(OFDM_data)
|
|
|
print("Number of OFDM samples in time-domain before CP: ", len(OFDM_time))
|
|
print("Number of OFDM samples in time-domain before CP: ", len(OFDM_time))
|
|
|
|
|
|
|
|
|
|
+
|
|
|
def addCP(OFDM_time):
|
|
def addCP(OFDM_time):
|
|
|
- cp = OFDM_time[-CP:] # take the last CP samples ...
|
|
|
|
|
|
|
+ cp = OFDM_time[-CP:] # take the last CP samples ...
|
|
|
return np.hstack([cp, OFDM_time]) # ... and add them to the beginning
|
|
return np.hstack([cp, OFDM_time]) # ... and add them to the beginning
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
OFDM_withCP = addCP(OFDM_time)
|
|
OFDM_withCP = addCP(OFDM_time)
|
|
|
print("Number of OFDM samples in time domain with CP: ", len(OFDM_withCP))
|
|
print("Number of OFDM samples in time domain with CP: ", len(OFDM_withCP))
|
|
|
|
|
|
|
@@ -320,7 +205,7 @@ def channel(signal):
|
|
|
|
|
|
|
|
OFDM_TX = OFDM_withCP
|
|
OFDM_TX = OFDM_withCP
|
|
|
OFDM_RX = channel(OFDM_TX)
|
|
OFDM_RX = channel(OFDM_TX)
|
|
|
-#OFDM_RX1 = optical_channel(OFDM_TX).numpy
|
|
|
|
|
|
|
+# OFDM_RX1 = optical_channel(OFDM_TX).numpy
|
|
|
plt.figure(figsize=(8, 2))
|
|
plt.figure(figsize=(8, 2))
|
|
|
plt.plot(abs(OFDM_TX), label='TX signal')
|
|
plt.plot(abs(OFDM_TX), label='TX signal')
|
|
|
plt.plot(abs(OFDM_RX), label='RX signal')
|
|
plt.plot(abs(OFDM_RX), label='RX signal')
|
|
@@ -329,12 +214,18 @@ plt.xlabel('Time')
|
|
|
plt.ylabel('$|x(t)|$')
|
|
plt.ylabel('$|x(t)|$')
|
|
|
plt.grid(True)
|
|
plt.grid(True)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
def removeCP(signal):
|
|
def removeCP(signal):
|
|
|
- return signal[CP:(CP+K)]
|
|
|
|
|
|
|
+ return signal[CP:(CP + K)]
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
OFDM_RX_noCP = removeCP(OFDM_RX)
|
|
OFDM_RX_noCP = removeCP(OFDM_RX)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
def DFT(OFDM_RX):
|
|
def DFT(OFDM_RX):
|
|
|
return np.fft.fft(OFDM_RX)
|
|
return np.fft.fft(OFDM_RX)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
OFDM_demod = DFT(OFDM_RX_noCP)
|
|
OFDM_demod = DFT(OFDM_RX_noCP)
|
|
|
|
|
|
|
|
|
|
|
|
@@ -362,12 +253,19 @@ def channelEstimate(OFDM_demod):
|
|
|
|
|
|
|
|
|
|
|
|
|
Hest = channelEstimate(OFDM_demod)
|
|
Hest = channelEstimate(OFDM_demod)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
def equalize(OFDM_demod, Hest):
|
|
def equalize(OFDM_demod, Hest):
|
|
|
return OFDM_demod / Hest
|
|
return OFDM_demod / Hest
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
equalized_Hest = equalize(OFDM_demod, Hest)
|
|
equalized_Hest = equalize(OFDM_demod, Hest)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
def get_payload(equalized):
|
|
def get_payload(equalized):
|
|
|
return equalized[dataCarriers]
|
|
return equalized[dataCarriers]
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
QAM_est = get_payload(equalized_Hest)
|
|
QAM_est = get_payload(equalized_Hest)
|
|
|
plt.plot(QAM_est.real, QAM_est.imag, 'bo');
|
|
plt.plot(QAM_est.real, QAM_est.imag, 'bo');
|
|
|
|
|
|
|
@@ -402,4 +300,4 @@ def PS(bits):
|
|
|
|
|
|
|
|
bits_est = PS(PS_est)
|
|
bits_est = PS(PS_est)
|
|
|
|
|
|
|
|
-print("Obtained Bit error rate: ", np.sum(abs(bits-bits_est))/len(bits))
|
|
|
|
|
|
|
+print("Obtained Bit error rate: ", np.sum(abs(bits - bits_est)) / len(bits))
|