|
|
@@ -5,8 +5,12 @@ import tensorflow as tf
|
|
|
from sklearn.metrics import accuracy_score
|
|
|
from tensorflow.keras import layers, losses
|
|
|
from tensorflow.keras.models import Model
|
|
|
+from tensorflow.python.keras.layers import LeakyReLU
|
|
|
+
|
|
|
import misc
|
|
|
import defs
|
|
|
+import os
|
|
|
+from models import basic
|
|
|
|
|
|
latent_dim = 64
|
|
|
|
|
|
@@ -41,7 +45,6 @@ class AutoencoderDemod(defs.Demodulator):
|
|
|
result = misc.int2bit_array(decoded.argmax(axis=1), self.N)
|
|
|
return result.reshape(-1, )
|
|
|
|
|
|
-
|
|
|
class Autoencoder(Model):
|
|
|
def __init__(self, N, noise):
|
|
|
super(Autoencoder, self).__init__()
|
|
|
@@ -49,16 +52,20 @@ class Autoencoder(Model):
|
|
|
self.encoder = tf.keras.Sequential()
|
|
|
self.encoder.add(tf.keras.Input(shape=(2 ** N,), dtype=bool))
|
|
|
self.encoder.add(layers.Dense(units=2 ** (N + 1)))
|
|
|
+ self.encoder.add(LeakyReLU(alpha=0.001))
|
|
|
# self.encoder.add(layers.Dropout(0.2))
|
|
|
self.encoder.add(layers.Dense(units=2 ** (N + 1)))
|
|
|
- self.encoder.add(layers.Dense(units=2, activation="sigmoid"))
|
|
|
+ self.encoder.add(LeakyReLU(alpha=0.001))
|
|
|
+ self.encoder.add(layers.Dense(units=2, activation="tanh"))
|
|
|
# self.encoder.add(layers.ReLU(max_value=1.0))
|
|
|
|
|
|
self.decoder = tf.keras.Sequential()
|
|
|
self.decoder.add(tf.keras.Input(shape=(2,)))
|
|
|
self.decoder.add(layers.Dense(units=2 ** (N + 1)))
|
|
|
+ self.decoder.add(LeakyReLU(alpha=0.001))
|
|
|
# self.decoder.add(layers.Dropout(0.2))
|
|
|
self.decoder.add(layers.Dense(units=2 ** (N + 1)))
|
|
|
+ self.decoder.add(LeakyReLU(alpha=0.001))
|
|
|
self.decoder.add(layers.Dense(units=2 ** N, activation="softmax"))
|
|
|
|
|
|
# self.randomiser = tf.random_normal_initializer(mean=0.0, stddev=0.1, seed=None)
|
|
|
@@ -85,7 +92,7 @@ class Autoencoder(Model):
|
|
|
|
|
|
def call(self, x, **kwargs):
|
|
|
encoded = self.encoder(x)
|
|
|
- encoded = encoded * 2 - 1
|
|
|
+ # encoded = encoded * 2 - 1
|
|
|
# encoded = tf.clip_by_value(encoded, clip_value_min=0, clip_value_max=1, name=None)
|
|
|
# noise = self.randomiser(shape=(-1, 2), dtype=tf.float32)
|
|
|
noise = np.random.normal(0, 1, (1, 2)) * self.noise
|
|
|
@@ -93,6 +100,33 @@ class Autoencoder(Model):
|
|
|
decoded = self.decoder(encoded + noisy)
|
|
|
return decoded
|
|
|
|
|
|
+ def fit_encoder(self, modulation, sample_size, train_size=0.8, epochs=1, batch_size=1, shuffle=False):
|
|
|
+ os.chdir('../')
|
|
|
+ alphabet = basic.load_alphabet(modulation, polar=False)
|
|
|
+
|
|
|
+ if not alphabet.shape[0] == self.N**2:
|
|
|
+ raise Exception("Cardinality of modulation scheme is different from cardinality of autoencoder!")
|
|
|
+
|
|
|
+ x_train = np.random.randint(self.N**2, size=int(sample_size*train_size))
|
|
|
+ y_train = alphabet[x_train]
|
|
|
+ x_train_ho = np.zeros((int(sample_size*train_size), self.N**2))
|
|
|
+ for idx, x in np.ndenumerate(x_train):
|
|
|
+ x_train_ho[idx, x] = 1
|
|
|
+
|
|
|
+ x_test = np.random.randint(self.N**2, size=int(sample_size*(1-train_size)))
|
|
|
+ y_test = alphabet[x_test]
|
|
|
+ x_test_ho = np.zeros((int(sample_size*(1-train_size)), self.N ** 2))
|
|
|
+ for idx, x in np.ndenumerate(x_test):
|
|
|
+ x_test_ho[idx, x] = 1
|
|
|
+
|
|
|
+ self.encoder.compile(optimizer='adam', loss=tf.keras.losses.MeanSquaredError())
|
|
|
+ self.encoder.fit(x_train_ho, y_train,
|
|
|
+ epochs=epochs,
|
|
|
+ batch_size=batch_size,
|
|
|
+ shuffle=shuffle,
|
|
|
+ validation_data=(x_test_ho, y_test))
|
|
|
+ pass
|
|
|
+
|
|
|
def train(self, samples=1e6):
|
|
|
if samples % self.N:
|
|
|
samples += self.N - (samples % self.N)
|
|
|
@@ -153,26 +187,35 @@ if __name__ == '__main__':
|
|
|
|
|
|
n = 4
|
|
|
|
|
|
- samples = 1e6
|
|
|
- x_train = misc.generate_random_bit_array(samples).reshape((-1, n))
|
|
|
- x_train_ho = misc.bit_matrix2one_hot(x_train)
|
|
|
- x_test_array = misc.generate_random_bit_array(samples * 0.3)
|
|
|
- x_test = x_test_array.reshape((-1, n))
|
|
|
- x_test_ho = misc.bit_matrix2one_hot(x_test)
|
|
|
+ # samples = 1e6
|
|
|
+ # x_train = misc.generate_random_bit_array(samples).reshape((-1, n))
|
|
|
+ # x_train_ho = misc.bit_matrix2one_hot(x_train)
|
|
|
+ # x_test_array = misc.generate_random_bit_array(samples * 0.3)
|
|
|
+ # x_test = x_test_array.reshape((-1, n))
|
|
|
+ # x_test_ho = misc.bit_matrix2one_hot(x_test)
|
|
|
|
|
|
autoencoder = Autoencoder(n, -8)
|
|
|
- autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
|
|
|
-
|
|
|
- autoencoder.fit(x_train_ho, x_train_ho,
|
|
|
- epochs=1,
|
|
|
- shuffle=False,
|
|
|
- validation_data=(x_test_ho, x_test_ho))
|
|
|
-
|
|
|
- encoded_data = autoencoder.encoder(x_test_ho)
|
|
|
- decoded_data = autoencoder.decoder(encoded_data).numpy()
|
|
|
|
|
|
- result = misc.int2bit_array(decoded_data.argmax(axis=1), n)
|
|
|
- print("Accuracy: %.4f" % accuracy_score(x_test_array, result.reshape(-1, )))
|
|
|
+ autoencoder.fit_encoder(modulation='16qam',
|
|
|
+ sample_size=1e6,
|
|
|
+ train_size=0.8,
|
|
|
+ epochs=50,
|
|
|
+ batch_size=256,
|
|
|
+ shuffle=True)
|
|
|
view_encoder(autoencoder.encoder, n)
|
|
|
|
|
|
+ # autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
|
|
|
+ #
|
|
|
+ # autoencoder.fit(x_train_ho, x_train_ho,
|
|
|
+ # epochs=1,
|
|
|
+ # shuffle=False,
|
|
|
+ # validation_data=(x_test_ho, x_test_ho))
|
|
|
+ #
|
|
|
+ # encoded_data = autoencoder.encoder(x_test_ho)
|
|
|
+ # decoded_data = autoencoder.decoder(encoded_data).numpy()
|
|
|
+ #
|
|
|
+ # result = misc.int2bit_array(decoded_data.argmax(axis=1), n)
|
|
|
+ # print("Accuracy: %.4f" % accuracy_score(x_test_array, result.reshape(-1, )))
|
|
|
+ # view_encoder(autoencoder.encoder, n)
|
|
|
+
|
|
|
pass
|