| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- typedef enum logic [1:0]{
- flag_none,
- flag_nan,
- flag_inf,
- flag_zero
- } product_flags;
- module fp_product #(parameter N=16, M=5)(input_a, input_b, output_z, clk, reset);
- localparam K=N-M-1; // Size of mantissa
- input logic [N-1:0] input_a, input_b;
- input logic clk, reset;
- output logic [N-1:0] output_z;
-
- reg [K-1:0] a_m0, b_m0, z_m1; // mantissa
- reg [K-1:0] a_m1, b_m1, z_m2; // mantissa
- reg [K-1:0] a_m2, b_m2, z_m3; // mantissa
- reg [K-1:0] z_m4;
-
- reg [M:0] a_e0, b_e0, z_e1; // exponent
- reg [M:0] a_e1, b_e1, z_e2; // exponent
- reg [M:0] a_e2, b_e2, z_e3; // exponent
- reg [M:0] z_e4;
-
- reg a_s0, b_s0, z_s1; // sign
- reg a_s1, b_s1, z_s2; // sign
- reg a_s2, b_s2, z_s3; // sign
- reg z_s4; // sign
- product_flags flags1; // 00 for no flag, 01 for NaN, 10 for infinity, 11 for zero
- reg [2*K-1:0] z_p3; // For storing the product of the two mantissa
- always_comb begin
- // Packing the output
- output_z = {z_s4, z_e4 + (1<<M), z_m4};
- end
- always_ff @(posedge clk)
- begin
- if (~reset)
- begin
- // Unpacking the inputs
- a_s0 <= input_a[N-1];
- a_e0 <= input_a[N-2:N-2-M] - (1<<M);
- a_m0 <= input_a[N-3-M:0];
-
- b_s0 <= input_b[N-1];
- b_e0 <= input_b[N-2:N-2-M] - (1<<M);
- b_m0 <= input_b[N-3-M:0];
-
- // Untouched pipelined registers
- a_s1 <= a_s0;
- a_s2 <= a_s1;
- a_e1 <= a_e0;
- a_m1 <= a_m0;
- b_s1 <= b_s0;
- b_s2 <= b_s1;
- b_e1 <= b_e0;
- b_m1 <= b_m0;
- z_s2 <= z_s1;
- z_s4 <= z_s3;
- z_e4 <= z_e3;
- z_m2 <= z_m1;
- z_m3 <= z_m2;
- z_s3 <= a_s2 ^ b_s2; //signs xor together
- z_e3 <= a_e2 + b_e2 - (1<<M); // exponents added together subtracting one offset
- z_p3 <= a_m2 * b_m2; // mantissa multiplied together and the most significant bits are stored in the output mantissa
- z_m4 <= z_p3[2*K-1:K];
- // If input a or input b is NaN then return NaN
- if (((a_e0 ==(1<<M)) && (a_m0 != 0)) || ((b_e0 == (1<<M)) && (b_m0 != 0)))
- begin
- z_s1 <= 1;
- z_e1 <= (1 << (M+1)) - 1;
- z_m1[K-1] <= 1;
- z_m1[K-2:0] <= 0;
- flags1 <= flag_nan;
- end
- // If a is infinity then return infinity
- else if (a_e0 == (1<<M))
- begin
- // Unless b is zero, then you return NaN instead
- if (($signed(b_e0) == (-1*((1<<M)-1))) && b_m0 == 0)
- begin
- z_s1 <= 1;
- z_e1 <= (1 << (M+1)) - 1;
- z_m1[K-1] <= 1;
- z_m1[K-2:0] <= 0;
- flags1 <= flag_nan;
- end
- else
- // Returning infinity
- begin
- z_s1 <= a_s0 ^ b_s0;
- z_e1 <= (1 << (M+1)) - 1;
- z_m1 <= 0;
- flags1 <= flag_inf;
- end
- end
- // If b is infinity then return infinity
- else if (b_s0 == (1<<M))
- begin
- //Unless a is zero, then return NaN instead
- if (($signed(a_e0) == (-1*((1<<M)-1))) && a_m0 == 0)
- begin
- z_s1 <= 1;
- z_e1 <= (1 << (M+1)) - 1;
- z_m1[K-1] <= 1;
- z_m1[K-2:0] <= 0;
- flags1 <= flag_nan;
- end
- else
- // Returning infinity
- begin
- z_s1 <= a_s0 ^ b_s0;
- z_e1 <= (1 << (M+1)) - 1;
- z_m1 <= 0;
- flags1 <= flag_inf;
- end
- end
- // If either input is zero then return zero
- else if ((($signed(a_e0) == (-1*((1<<M)-1))) && (a_m0 == 0)) || (($signed(b_e0) == (-1*((1<<M)-1))) && (b_m0 == 0)))
- begin
- z_s1 <= a_s0 ^ b_s0;
- z_e1 <= 0;
- z_m1 <= 0;
- flags1 <= flag_zero;
- end
- // If b is zero then return zero
-
- // If none of the return flags have been set
- if (flags1 == flag_none)
- begin
- // If msb of a_m is 0 then shift left and reduce exponent by 1
- if (a_m1[K-1] == 0)
- begin
- a_m2 <= a_m1 << 1;
- a_e2 <= a_e1 - 1;
- end
- //Just for completion of logic
- else
- begin
- a_m2 <= a_m1;
- a_e2 <= a_e1;
- end
- // If msb of b_m is 0 then shift left and reduce exponent by 1
- if (b_m1[K-1] == 0)
- begin
- b_m2 <= b_m1 << 1;
- b_e2 <= b_e1 - 1;
- end
- //Just for completion of logic
- else
- begin
- b_m2 <= b_m1;
- b_e2 <= b_e1;
- end
- end
-
- else
- begin
- a_m2 <= a_m1;
- a_e2 <= a_e1;
- b_m2 <= b_m1;
- b_e2 <= b_e1;
- z_s3 <= z_s2;
- z_e2 <= z_e1;
- z_e3 <= z_e2;
- z_m4 <= z_m3;
- z_p3 <= 0;
- end
- end
- else
- begin
- a_s0 <= 0;
- a_e0 <= 0;
- a_m0 <= 0;
-
- a_s1 <= 0;
- a_e1 <= 0;
- a_m1 <= 0;
-
- a_s2 <= 0;
- a_e2 <= 0;
- a_m2 <= 0;
-
- b_s0 <= 0;
- b_e0 <= 0;
- b_m0 <= 0;
-
- b_s1 <= 0;
- b_e1 <= 0;
- b_m1 <= 0;
-
- b_s2 <= 0;
- b_e2 <= 0;
- b_m2 <= 0;
-
- z_s1 <= 0;
- z_e1 <= 0;
- z_m1 <= 0;
-
- z_s2 <= 0;
- z_e2 <= 0;
- z_m2 <= 0;
-
- z_s3 <= 0;
- z_e3 <= 0;
- z_m3 <= 0;
-
- z_s4 <= 0;
- z_e4 <= 0;
- z_m4 <= 0;
-
- z_p3 <= 0;
-
- flags1 <= flag_none;
- end
- end
- endmodule : fp_product
|